Advanced Robotics—Redundant Serial

Manipulators

M. Tale Masouleh
Human and Robot Interaction Laboratory

Human and Robot Interaction Laboratory

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial manipulators How to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial manipulators How to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!

The Redundant Serial Manipulators

Introduction

- Why redundancy!

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial manipulators

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial
manipulators
Hown to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!
- Redundancy in parallel and serial manipulators
- How to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial
manipulators
How to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial manipulators - How to solve it

The Redundant Serial Manipulators

Introduction

- Why redundancy!

Redundancy in parallel and serial

manipulators
How to solve it

- Obstacle avoidance
- Singularity avoidance
- Fault tolerance

The Redundant Serial Manipulators

Introduction

Why redundancy!

- Redundancy in parallel and serial manipulators

How to solve it

The Redundant Serial Manipulators

Introduction

The Redundant Serial Manipulators

Introduction

Why redundancy!

- Redundancy in parallel and serial manipulators
How to solve it

The Redundant Serial Manipulators

Introduction

Why redundancy!

- Redundancy in parallel and serial manipulators
How to solve it

The Redundant Serial Manipulators

Introduction

Why redundancy!

- Redundancy in parallel and serial manipulators

The Redundant Serial Manipulators

Introduction

- Solve $\mathbf{A}_{m \times n} \mathbf{x}_{n}=\mathbf{b}_{m}$
(1) when $m>n$
(2) when $m<n$
- The SVD
- The performance index
- A part of Advanced

Mathematic For Eng.

The Redundant Serial Manipulators

Introduction

Why redundancy!

 Redundancy in paral el and serial manipulators- How to solve it
- Inverse Kinematic Problem
- Forward Kinematic Problem
- The Singularity
- The workspace

The Redundant Serial Manipulators

Velocity Equation

- The system of equations to be solved is:

$$
\theta=\dot{J} \dot{\theta}
$$

- Why we have such a relation for the Jacobian:

$$
\left[\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots \mathbf{e}_{n} \\
\mathbf{e}_{1} \times \mathbf{r}_{1} & \mathbf{e}_{2} \times \mathbf{r}_{2} & \ldots \mathbf{e}_{n} \times \mathbf{r}_{n}
\end{array}\right]
$$

- A review

The Redundant Serial Manipulators

Velocity Equation

- The system of equations to be solved is:

$$
\theta=\boldsymbol{J} \dot{\theta}
$$

- Why we have such a relation for the Jacobian:

$$
\left[\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots \mathbf{e}_{n} \\
\mathbf{e}_{1} \times \mathbf{r}_{1} & \mathbf{e}_{2} \times \mathbf{r}_{2} & \ldots \mathbf{e}_{n} \times \mathbf{r}_{n}
\end{array}\right]
$$

- A review

The Redundant Serial Manipulators

The General Formulation of the Jacobian Matrix

- For the angular velocity, one has:

$$
\begin{aligned}
& \boldsymbol{\omega}_{1}=\dot{\theta}_{1} \mathbf{e}_{1}, \boldsymbol{\omega}_{2}=\dot{\theta}_{1} \mathbf{e}_{1}+\dot{\theta}_{2} \mathbf{e}_{2} \\
& \boldsymbol{\omega}=\dot{\theta}_{1} \mathbf{e}_{1}+\dot{\theta}_{2} \mathbf{e}_{2}+\ldots+\dot{\theta}_{n} \mathbf{e}_{n}
\end{aligned}
$$

- For $\dot{\mathbf{p}}$, develop the following:

$$
\dot{\mathbf{p}}=\dot{\mathbf{a}}_{1}+\dot{\mathbf{a}}_{2}+\ldots+\dot{\mathbf{a}}_{n}
$$

- Then you should find the Jacobian matrix.

The Redundant Serial Manipulators

The General Formulation of the Jacobian Matrix

- For the angular velocity, one has:

$$
\begin{aligned}
& \boldsymbol{\omega}_{1}=\dot{\theta}_{1} \mathbf{e}_{1}, \boldsymbol{\omega}_{2}=\dot{\theta}_{1} \mathbf{e}_{1}+\dot{\theta}_{2} \mathbf{e}_{2} \\
& \boldsymbol{\omega}=\dot{\theta}_{1} \mathbf{e}_{1}+\dot{\theta}_{2} \mathbf{e}_{2}+\ldots+\dot{\theta}_{n} \mathbf{e}_{n}
\end{aligned}
$$

- For $\dot{\mathbf{p}}$, develop the following:

$$
\dot{\mathbf{p}}=\dot{\mathbf{a}}_{1}+\dot{\mathbf{a}}_{2}+\ldots+\dot{\mathbf{a}}_{n}
$$

- Then you should find the Jacobian
 matrix.

The Redundant Serial Manipulators

Rotation Sequence

- All the rotation matrix are expressed in a fixed frame

$$
\begin{array}{r}
\mathbf{v}_{1}=\mathbf{Q}_{1} \mathbf{v} \\
\mathbf{v}_{2}=\mathbf{Q}_{2} \mathbf{v}_{1}=\mathbf{Q}_{2} \mathbf{Q}_{1} \mathbf{v} \\
\mathbf{v}_{3}=\mathbf{Q}_{3} \mathbf{v}_{2}=\mathbf{Q}_{3} \mathbf{Q}_{2} \mathbf{Q}_{1} \mathbf{v}
\end{array}
$$

- All the rotation matrix are expressed in their corresponding local frames

$$
[\mathbf{A}]_{1}=\mathbf{Q}[\mathbf{A}]_{2} \mathbf{Q}^{T}
$$

The Redundant Serial Manipulators

The Undetermined Linear Case

- For $\mathbf{A}_{m \times n} \mathbf{x}_{n}=\mathbf{b}_{m}$
- we have $m<n$
- and the solutions can be expressed as follows:

$$
\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}
$$

- where \mathbf{A}^{\dagger} is represented by

$$
\mathbf{A}^{\dagger}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}
$$

- See Appendixes A for more information.
- In order to take into account the performance index, \mathbf{z} :

$$
\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{1}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{z}
$$

- Now apply the above for the velocity equation:

$$
\theta=\boldsymbol{J} \dot{\theta}
$$

- which becomes:

$$
\dot{\theta}=\mathbf{J}^{\dagger} \theta+\left(\mathbf{1}-\mathbf{J}^{\dagger} \mathbf{J}\right)
$$

The Redundant Serial Manipulators

The Undetermined Linear Case-Application

Assume $\dot{\boldsymbol{\theta}}$ to be a solution, therefore

$$
\dot{\boldsymbol{\theta}}+\boldsymbol{\mathcal { N }} \dot{\boldsymbol{\theta}}_{0}
$$

$$
g(\dot{\boldsymbol{\theta}}, \boldsymbol{\lambda})=\frac{1}{2}\left(\dot{\boldsymbol{\theta}}-\dot{\boldsymbol{\theta}}_{0}\right)^{T}\left(\dot{\boldsymbol{\theta}}-\dot{\boldsymbol{\theta}}_{0}\right)+\boldsymbol{\lambda}^{T}(\dot{\mathbf{t}}-\mathbf{J} \dot{\boldsymbol{\theta}})
$$

is also a solution.
$\dot{\mathbf{t}}_{0}$ can be specified so as to satisfy

$$
\dot{\boldsymbol{\theta}}=\mathbf{J}^{T} \boldsymbol{\lambda}+\dot{\boldsymbol{\theta}_{0}} \quad \dot{\mathbf{t}}=\mathbf{J} \dot{\boldsymbol{\theta}}
$$ an additional constraint to the problem. Assume the following

$$
\boldsymbol{\lambda}=\left(\mathbf{J} \mathbf{J}^{T}\right)^{-1}\left(\dot{\mathbf{t}}-\mathbf{J} \dot{\boldsymbol{\theta}}_{0}\right)
$$

$$
g(\dot{\boldsymbol{\theta}})=\frac{1}{2}\left(\dot{\boldsymbol{\theta}}-\dot{\boldsymbol{\theta}}_{0}\right)^{T}\left(\dot{\boldsymbol{\theta}}-\dot{\boldsymbol{\theta}}_{0}\right)
$$

$$
\dot{\boldsymbol{\theta}}=\mathbf{J}^{\dagger} \dot{\mathbf{t}}+\left(\mathbf{1}-\mathbf{J}^{\dagger} \mathbf{J}\right) \dot{\boldsymbol{\theta}}_{0}
$$

- We use the Lagrange multiplier

The Redundant Serial Manipulators

The Undetermined Linear Case-Application, Cont'd

- Generally, the following is considered for the objective function:

$$
\dot{\boldsymbol{\theta}}_{0}=k_{0}\left(\frac{\partial \omega(\mathbf{q})}{\partial \mathbf{q}}\right)^{T}
$$

- Typical objective:
(1) Manipulibility
(2) Distance from mechanism joint
limits
© Distance from an obstacle
Now, let's have a look to your
homewrok

The Redundant Serial Manipulators

The Undetermined Linear Case-Application, Cont'd

- Generally, the following is considered for the objective function:

$$
\dot{\boldsymbol{\theta}}_{0}=k_{0}\left(\frac{\partial \omega(\mathbf{q})}{\partial \mathbf{q}}\right)^{T}
$$

- Typical objective:

$$
\omega(\boldsymbol{\theta})=\sqrt{\operatorname{det}\left(\mathbf{J}(\mathbf{q}) \mathbf{J}^{T}(\mathbf{q})\right)}
$$

(1) Manipulibility

> (2) Distance from mechanism joint limits
> Distance from an obstacle Now, let's have a look to your homewrok

The Redundant Serial Manipulators

The Undetermined Linear Case-Application, Cont'd

- Generally, the following is considered for the objective function:

$$
\dot{\boldsymbol{\theta}}_{0}=k_{0}\left(\frac{\partial \omega(\mathbf{q})}{\partial \mathbf{q}}\right)^{T}
$$

- Typical objective:

$$
\omega(\boldsymbol{\theta})=-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\theta_{i}-\bar{\theta}_{i}}{\theta_{i M}-\theta_{i m}}\right)^{2}
$$

(2) Distance from mechanism joint limits
© Distance from an obstacle Now, let's have a look to your homewrok

The Redundant Serial Manipulators

The Undetermined Linear Case-Application, Cont'd

- Generally, the following is considered for the objective function:

$$
\dot{\boldsymbol{\theta}}_{0}=k_{0}\left(\frac{\partial \omega(\mathbf{q})}{\partial \mathbf{q}}\right)^{T}
$$

- Typical objective:

$$
\omega(\boldsymbol{\theta})=\min _{\mathbf{p}, \mathbf{o}}\|\mathbf{p}(\boldsymbol{\theta})-\mathbf{o}\|
$$

(1) Manipulibility
(2) Distance from mechanism joint limits
(3) Distance from an obstacle

Now, let's have a look to your
homewrok

The Redundant Serial Manipulators

The Undetermined Linear Case-Application, Cont'd

- Generally, the following is considered for the objective function:

$$
\dot{\boldsymbol{\theta}}_{0}=k_{0}\left(\frac{\partial \omega(\mathbf{q})}{\partial \mathbf{q}}\right)^{T}
$$

- Typical objective:

- Now, let's have a look to your homewrok

