UNIVERSITY OF TEHRAN

ADVANCED ROBOTICS
Chapter II: Rotation of Rigid Bodies

1. (25 points) Find the axis and the angle of rotation of the proper orthogonal matrix \boldsymbol{Q} given below in a certain coordinate frame \mathcal{F}.

$$
\left[\boldsymbol{Q}_{\mathcal{F}}\right]=\frac{1}{3}\left[\begin{array}{ccc}
-1 & -2 & 2 \\
-2 & -1 & -2 \\
2 & -2 & -1
\end{array}\right]
$$

Answer: According to the Eq. (2.58) of the book, it is apparent that:

$$
\operatorname{tr}(\mathbf{Q})=q_{11}+q_{22}+q_{33}=\frac{1}{3}(-1-1-1)=-1
$$

where $\operatorname{tr}($.$) returns the trace of its matrix component. Therefore, according to Eq. (2.69)$ one has:

$$
\cos \phi=\frac{\operatorname{tr}(\mathbf{Q})-1}{2}=\frac{-1-1}{2}=-1 \Longrightarrow \sin \phi=0 \Longrightarrow \phi=(2 n-1) \pi \quad n \in \mathbb{Z}
$$

where ϕ is the angle of rotation.
Moreover, consider the vector $\mathbf{e}=\left[\begin{array}{lll}e_{1} & e_{2} & e_{3}\end{array}\right]^{T}$ as the unit vector along the axis of rotation, which according to Eq. (2.49) leads to:

$$
\begin{gathered}
\mathbf{Q}=-\mathbf{1}+2 \mathbf{e e}^{T} \Longrightarrow \frac{1}{3}\left[\begin{array}{ccc}
-1 & -2 & 2 \\
-2 & -1 & -2 \\
2 & -2 & -1
\end{array}\right]=-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+2\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right] \Longrightarrow \\
\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 2 \\
-2 & 2 & -2 \\
2 & -2 & 2
\end{array}\right]=2\left[\begin{array}{ccc}
e_{1}^{2} & e_{1} e_{2} & e_{1} e_{3} \\
e_{2} e_{1} & e_{2}^{2} & e_{2} e_{3} \\
e_{3} e_{1} & e_{3} e_{2} & e_{3}^{2}
\end{array}\right] \Longrightarrow \frac{1}{3}\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
e_{1}^{2} & e_{1} e_{2} & e_{1} e_{3} \\
e_{2} e_{1} & e_{2}^{2} & e_{2} e_{3} \\
e_{3} e_{1} & e_{3} e_{2} & e_{3}^{2}
\end{array}\right] \Longrightarrow \\
e_{1}^{2}=\frac{1}{3} \Longrightarrow e_{1}= \pm \frac{\sqrt{3}}{3} \Longrightarrow \mathbf{e}= \pm \frac{\sqrt{3}}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

upon which the axis of rotation is obtained.
2. (25 points) The three entries above the diagonal of a 3×3 matrix \boldsymbol{Q} that is supposed to represent a rotation are given below:

$$
q_{12}=\frac{1}{2}, \quad q_{13}=-\frac{2}{3}, \quad q_{23}=\frac{3}{4}
$$

Without knowing the other entries, explain why the above entries are unacceptable.
Answer: Obviously, the following condition should be held for the matrix \mathbf{Q} to be orthogonal and then satisfy the requirements of being a rotation matrix:

$$
\begin{gather*}
\mathbf{Q Q}^{T}=\mathbf{I}_{3 \times 3} \Longrightarrow \\
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
q_{11} & \frac{1}{2} & -\frac{2}{3} \\
q_{21} & q_{22} & \frac{3}{4} \\
q_{31} & q_{32} & q_{33}
\end{array}\right]\left[\begin{array}{ccc}
q_{11} & q_{21} & q_{31} \\
\frac{1}{2} & q_{22} & q_{32} \\
-\frac{2}{3} & \frac{3}{4} & q_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \tag{1}
\end{gather*}
$$

where the matrix \mathbf{R} has been considered as to checking the orthogonality of the rotation matrix \mathbf{Q}. From the above relation, it can be inferred that:

$$
\begin{gather*}
r_{11}=1 \Longrightarrow q_{11}^{2}+\left(\frac{1}{2}\right)^{2}+\left(-\frac{2}{3}\right)^{2}=q_{11}^{2}+\frac{1}{4}+\frac{4}{9}=q_{11}^{2}+\frac{9+16}{36}=q_{11}^{2}+\frac{25}{36}=1 \Longrightarrow q_{11}^{2}=\frac{11}{36} \\
\Longrightarrow q_{11}= \pm \frac{\sqrt{11}}{6} \tag{2}
\end{gather*}
$$

Moreover, from Eq. (1) we have:

$$
\begin{equation*}
r_{12}=0 \Longrightarrow q_{11} q_{21}+\frac{1}{2} q_{22}+\left(-\frac{2}{3}\right)\left(\frac{3}{4}\right)=q_{11} q_{21}+\frac{1}{2} q_{22}-\frac{1}{2}=0 \tag{3}
\end{equation*}
$$

Now substitution of Eq. (2) into Eq. (3) leads to:

$$
\begin{equation*}
\pm \frac{\sqrt{11}}{6} q_{21}+\frac{1}{2} q_{22}-\frac{1}{2}=0 \Longrightarrow \pm \frac{\sqrt{11}}{3} q_{21}+q_{22}-1=0 \Longrightarrow q_{22}=\mp \frac{\sqrt{11}}{3} q_{21}+1 \tag{4}
\end{equation*}
$$

Furthermore, from Eq. (1) it can be deduced that:

$$
\begin{equation*}
r_{22}=1 \Longrightarrow q_{21}^{2}+q_{22}^{2}+\left(\frac{3}{4}\right)^{2}=q_{21}^{2}+q_{22}^{2}+\frac{9}{16}=1 \tag{5}
\end{equation*}
$$

Now substitution of Eq. (4) into Eq. (5) leads to:

$$
\begin{aligned}
q_{21}^{2} & +\left(\mp \frac{\sqrt{11}}{3} q_{21}+1\right)^{2}+\frac{9}{16}=1 \Longrightarrow q_{21}^{2}+\frac{11}{9} q_{21}^{2} \mp \frac{2 \sqrt{11}}{3} q_{21}+1+\frac{9}{16}=1 \\
& \Longrightarrow \frac{20}{9} q_{21}^{2} \mp \frac{2 \sqrt{11}}{3} q_{21}+\frac{9}{16}=0 \Longrightarrow 320 q_{21}^{2} \mp 96 \sqrt{11} q_{21}+81=0 \Longrightarrow
\end{aligned}
$$

$$
\begin{gathered}
q_{21}=\frac{ \pm 96 \sqrt{11} \pm \sqrt{11(96)^{2}-4 \times 320 \times 81}}{2 \times 320}=\frac{ \pm 96 \sqrt{11} \pm \sqrt{11 \times 9216-103680}}{640}= \\
\frac{ \pm 96 \sqrt{11} \pm \sqrt{101376-103680}}{640}=\frac{ \pm 96 \sqrt{11} \pm \sqrt{-2304}}{640}=\frac{ \pm 96 \sqrt{11} \pm 48 i}{640}=\frac{3(\pm 2 \sqrt{11} \pm i)}{40}
\end{gathered}
$$

which indicates that for satisfaction of the orthogonality condition, q_{21} must be a complex number, which is not acceptable. Therefore, the matrix \mathbf{Q} cannot be a rotation matrix, thereby completing the proof.
3. (50 points) The orientation of the end-effector of a given robot is to be inferred from jointencoder readouts, which report an orientation given by a matrix \boldsymbol{Q} in \mathcal{F}_{1}-coordinates, namely,

$$
[\boldsymbol{Q}]_{1}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right]
$$

(a) Show that the above matrix can indeed represent the orientation of a rigid body.

Answer: Two conditions should be checked to be held, for the matrix \mathbf{Q} to be able to represent a rotation. Firstly, the orthogonality condition:

$$
\mathbf{Q Q}^{T}=\left(\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right]\right)\left(\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right]\right)=\frac{1}{9}\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I}_{3 \times 3}
$$

which is satisfied. Moreover, the matrix \mathbf{Q} should be proper, i.e., its determinant should be equal to 1 , which is proved as follows:

$$
\begin{gathered}
\operatorname{det}(\mathbf{Q})= \\
\frac{1}{27}\{(-1)(-1)(-1)+(2)(2)(2)+(2)(2)(2)-(2)(-1)(2)-(2)(2)(-1)-(-1)(2)(2)\}= \\
\frac{1}{27}(-1+8+8+4+4+4)=\frac{27}{27}=1 .
\end{gathered}
$$

(b) What is \boldsymbol{Q} in end-effector coordinates, i.e., in a frame \mathcal{F}_{7}, if \mathcal{Z}_{7} is chosen parallel to the axis of rotation of \boldsymbol{Q} ?

Answer: According to the Eq. (2.58) of the book, it is apparent that:

$$
\operatorname{tr}(\mathbf{Q})=q_{11}+q_{22}+q_{33}=\frac{1}{3}(-1-1-1)=-1
$$

where $\operatorname{tr}($.$) returns the trace of its matrix component. Therefore, according to Eq. (2.69)$ one has:

$$
\cos \phi=\frac{\operatorname{tr}(\mathbf{Q})-1}{2}=\frac{-1-1}{2}=-1 \Longrightarrow \sin \phi=0 \Longrightarrow \phi=(2 n-1) \pi \quad n \in \mathbb{Z}
$$

where ϕ is the angle of rotation.
Moreover, because \mathcal{Z}_{7} is chosen parallel to the axis of rotation of \mathbf{Q}, the vector $\mathbf{e}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ is the unit vector along the axis of rotation, which according to Eq. (2.49) leads to:
$\mathbf{Q}=-\mathbf{1}+2 \mathbf{e e}^{T}=-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]=-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
which is the desired rotation matrix.

