Advanced Robotics-Numerical Solution for the IKP of Serial Manipulators

M. Tale Masouleh
Human and Robot Interaction Laboratory

April 8, 2013

The Numerical Solutions for the IKP

Introduction

- We pause here what we have seen for the redunant serial manipulator.

We will touch upon the numerical solutions for the IKP of serial manipulator For the decoupled a explicit solutic

- It is of great heln for non-decoupled serial manipulators.

The Numerical Solutions for the IKP

Introduction

We pause here what we have seen for the redunant serial manipulator.

- We will touch upon the numerical solutions for the IKP of serial manipulator
- For the decoupled a explicit solution can be presented

- It is of great heln for non-decoupled serial manipulators.

The Numerical Solutions for the IKP

Introduction

- We pause here what we have seen for the redunant serial manipulator. We will touch upon the numerical solutions for the IKP of serial manipulator
- For the decoupled a explicit solution can be presented

- It is of great help for non-decoupled serial manipulators.

The Numerical Solutions for the IKP

Introduction

- We pause here what we have seen for the redunant serial manipulator. We will touch upon the numerical solutions for the IKP of serial manipulator For the decoupled a explicit solution can be presented

- It is of great help for non-decoupled serial manipulators.

The Numerical Solutions for the IKP

The Procedure

- We have to define the D-H parameters and the following relations:

$$
\left[\mathbf{Q}_{i}\right]_{i}=\left[\begin{array}{ccc}
\cos \theta_{i} & -\cos \alpha_{i} \sin \theta_{i} & \sin \alpha_{i} \sin \theta_{i} \\
\sin \theta_{i} & \cos \alpha_{i} \cos \theta_{i} & -\sin \alpha_{i} \cos \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i}
\end{array}\right]
$$

$\left[\mathbf{a}_{i}\right]_{i}=\left[\begin{array}{c}a_{i} \cos \theta_{i} \\ a_{i} \sin \theta_{i} \\ b_{i}\end{array}\right]$

$\mathbf{Q}=\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{Q}_{5} \mathbf{Q}_{6}$

$$
\mathbf{p}=\sum_{1}^{6}\left[\mathbf{a}_{i}\right]_{1}
$$

The Numerical Solutions for the IKP

The Procedure

- We define \mathbf{f}_{A} and \mathbf{f}_{B} as follows:

$$
\begin{array}{r}
\mathbf{f}_{A}=\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3} \mathbf{Q}_{4} \mathbf{Q}_{5} \mathbf{Q}_{6}-\mathbf{Q} \\
\mathbf{f}_{B}=\sum_{1}^{6}\left[\mathbf{a}_{i}\right]_{1}-\mathbf{p}
\end{array}
$$

- Then \mathbf{f} is defined as follows:

$$
\mathbf{f}=\left[\begin{array}{l}
\mathbf{f}_{A} \\
\mathbf{f}_{B}
\end{array}\right]
$$

The Numerical Solutions for the IKP

The Procedure

- We define the following:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\Delta \mathbf{x}_{k}
$$

- Then upon using the Taylor series:

$$
\begin{array}{r}
\mathbf{f}\left(\mathbf{x}_{k+1}\right)=\mathbf{f}\left(\mathbf{x}_{k}+\Delta \mathbf{x}_{k}\right) \\
=\mathbf{f}\left(\mathbf{x}_{k}\right)+\mathbf{J}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}_{k}=0
\end{array}
$$

- which leads to

$$
\mathbf{J}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}_{k}=-\mathbf{f}\left(\mathbf{x}_{k}\right)
$$

The Numerical Solutions for the IKP

The Procedure

- We define the following:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\Delta \mathbf{x}_{k}
$$

- Then upon using the Taylor series:

$$
\begin{array}{r}
\mathbf{f}\left(\mathbf{x}_{k+1}\right)=\mathbf{f}\left(\mathbf{x}_{k}+\Delta \mathbf{x}_{k}\right) \\
=\mathbf{f}\left(\mathbf{x}_{k}\right)+\mathbf{J}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}_{k}=0
\end{array}
$$

$$
\begin{array}{r}
\Delta \mathbf{x}_{k}=-\mathbf{J}^{\dagger}\left(\mathbf{x}_{k}\right) \mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{J}^{\dagger}=\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T} \\
\mathbf{f}^{T} \mathbf{f}<\epsilon
\end{array}
$$

$$
\mathbf{J}\left(\mathbf{x}_{k}\right) \Delta \mathbf{x}_{k}=-\mathbf{f}\left(\mathbf{x}_{k}\right)
$$

The Numerical Solutions for the IKP

The Procedure

- There is another approach:

$$
\min _{x} z \quad \text { where } \quad z=\frac{1}{2} \mathbf{f}^{T} \mathbf{f}
$$

where

$$
\nabla z=\frac{\partial z}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \frac{\partial z}{\partial \mathbf{f}}=\mathbf{J}^{T} \mathbf{f}=\mathbf{0}
$$

- Then one should use the Newton-Raphson method

The Numerical Solutions for the IKP

The Procedure

- There is another approach:

$$
\min _{x} z \quad \text { where } \quad z=\frac{1}{2} \mathbf{f}^{T} \mathbf{f}
$$

where
$\nabla z=\frac{\partial z}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \frac{\partial z}{\partial \mathbf{f}}=\mathbf{J}^{T} \mathbf{f}=\mathbf{0}$

$$
\begin{aligned}
\Delta \mathbf{x}_{k} & =-\mathbf{J}^{\dagger}\left(\mathbf{x}_{k}\right) \mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{J}^{\dagger} & =\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T}
\end{aligned}
$$

- Then one should use the Newton-Raphson method

The Numerical Solutions for the IKP

An alternative to express \mathbf{f}

- From the linear invariant, we define the following:
$\mathbf{f}_{R}(\boldsymbol{\theta})=2 \operatorname{vect}\left(\mathbf{Q}_{1} \ldots \mathbf{Q}_{6}\right)-2 \operatorname{vect}(\mathbf{Q})=0$
$f_{S}(\boldsymbol{\theta})=\operatorname{tr}\left(\mathbf{Q}_{1} \ldots \mathbf{Q}_{6}\right)-\operatorname{tr}(\mathbf{Q})=0$

$\mathbf{f}_{T}(\boldsymbol{\theta})=\sum_{1}^{6}\left[\mathbf{a}_{i}\right]_{1}-\mathbf{p}=0$
- Then we define the following:

$$
\mathbf{f}(\boldsymbol{\theta})=\left[\mathbf{f}^{T}(\boldsymbol{\theta}), f_{S}(\boldsymbol{\theta}), \mathbf{f}_{T}^{T}(\boldsymbol{\theta})\right]^{T}
$$

The Numerical Solutions for the IKP

An alternative to express \mathbf{f}

- From the linear invariant, we define the following:
$\mathbf{f}_{R}(\boldsymbol{\theta})=2 \operatorname{vect}\left(\mathbf{Q}_{1} \ldots \mathbf{Q}_{6}\right)-2 \operatorname{vect}(\mathbf{Q})=0$
$f_{S}(\boldsymbol{\theta})=\operatorname{tr}\left(\mathbf{Q}_{1} \ldots \mathbf{Q}_{6}\right)-\operatorname{tr}(\mathbf{Q})=0$

$\mathbf{f}_{T}(\boldsymbol{\theta})=\sum_{1}^{6}\left[\mathbf{a}_{i}\right]_{1}-\mathbf{p}=0$
- Then we define the following:

$$
\mathbf{J}=\frac{\partial \mathbf{f}}{\partial \boldsymbol{\theta}}=\left[\begin{array}{c}
\frac{\partial \mathbf{f}_{R}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\
\frac{\partial \mathbf{f}_{S}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\
\frac{\partial \mathbf{f}_{T}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
\end{array}\right]
$$

$$
\mathbf{f}(\boldsymbol{\theta})=\left[\mathbf{f}^{T}(\boldsymbol{\theta}), f_{S}(\boldsymbol{\theta}), \mathbf{f}_{T}^{T}(\boldsymbol{\theta})\right]^{T}
$$

The Numerical Solutions for the IKP

An alternative to express \mathbf{f}

- It can be shown that:

$$
\begin{array}{r}
\frac{\partial f_{R}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=(\mathbf{1} \operatorname{tr}(\mathbf{Q})-\mathbf{Q}) \mathbf{A} \\
\frac{\partial f_{S}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=-2 \mathbf{q}^{T} \mathbf{A} \\
\frac{\partial f_{T}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\mathbf{B}
\end{array}
$$

- where

$$
\begin{array}{r}
\mathbf{A} \equiv\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right] \\
\mathbf{B} \equiv\left[\mathbf{e}_{1} \times \mathbf{r}_{1}, \mathbf{e}_{2} \times \mathbf{r}_{2}, \ldots, \mathbf{e}_{n} \times \mathbf{r}_{n}\right]
\end{array}
$$

