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Singularity Analysis of Closed-Loop Kinematic
Chains

CLEMENT GOSSELIN, MEMBER, 1EEE, AND JORGE ANGELES

Abstract— This paper presents an analysis of the different kinds of sin-
gularities encountered in closed-loop kinematic chains. A general clas-
sification of these singularities in three main groups, which is based on
the properties of the Jacobian matrices of the chain, is described. The
identification of the singular configurations is particularly relevant for
hard automation modules or robotic devices based on closed kinematic
chains, such as linkages and parallel manipulators. Examples are given
to illustrate the application of the method to these mechanical systems.

1. INTRODUCTION

HE STUDY of the kinematics of mechanical systems

leads inevitably to the problem of singular configurations.
These configurations are defined as those in which the Jaco-
bian matrices involved, i.e., those matrices relating the input
speeds with the output speeds, become rank deficient. They
correspond to configurations of the system that are usually un-
desirable since the degree of freedom of the system changes
instantaneously.

For simple, open chains, the singularity problem has been
addressed by several authors [1]-[8]. For complex chains,
i.e., kinematic chains containing multiple loops and many de-
grees of freedom, studies are scarce [9]. However, the prob-
lem in this context is essentially the same as that encountered
in single-degree-of-freedom, simple, closed kinematic chains
[10]-[14].

A singularity analysis for closed-loop kinematic chains is
presented in this paper. It is shown that the singularities en-
countered in closed-loop kinematic chains can be divided into
three main groups. This classification, in fact, completes and
formalizes observations that were made in [14], where singu-
larities of two different natures were identified for a closed-
loop manipulator. Moreover, the singularities discussed here,
which have been known under different names, have been stud-
ied by several authors, particularly in connection with mecha-
nisms (see, e.g., {13], [15]-[20]). The purpose of the analysis
presented here is to introduce a general classification of singu-
larities that is well suited for robotic devices and that includes
other considerations that are particularly relevant to these ma-
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chines. As demonstrated by the examples included here, this
analysis is applicable to simple and complex kinematic chains
in general. Complex kinematic chains are defined as the ones
containing at least one link that is directly coupled to at least
three other links.

The possibility of applications of simple and complex closed
kinematic chains are numerous. Examples can be found even
in the early work on machinery. The Watt and Stephenson
linkages, for instance, clearly constitute planar six-link com-
plex kinematic chains [13], [18]. Parallel manipulators prob-
ably constitute the best known example of complex kinematic
chains used in robotics. However, more recently, with the
advances in computer-aided synthesis of linkages, researchers
have started to consider the use of complex kinematic chains as
hard automation modules that are designed to perform a pre-
cise repetitive task. The inherent rigidity of complex kinematic
chains is one of the important motivations behind these studies
because complex architectures enhance both the accuracy and
the load-carrying capacity of the systems at hand. Some of the
designs even include a certain functional flexibility, i.e., pro-
vision to perform alternate tasks by a simple change— which
can be done within minutes or even seconds—in their link-
age parameters; for instance, changing the distance or angle
between two joint axes of the fixed link provides a reconfig-
urability that adds to the system functionality. Examples of the
results obtained with this approach are found in {21].

The emergence of these new mechanisms and manipulators
based on closed-loop kinematic chains motivates the singular-
ity analysis presented here, which will be illustrated through
a series of examples.

II. SINGULARITY ANALYSIS

A closed-loop kinematic chain consists of a set of rigid
bodies connected to each other with joints where at least one
closed loop exists. The chain is also characterized by a set
of inputs (denoted here by an n-dimensional vector 6), which
correspond to the powered joints, and by a set of output coor-
dinates (denoted here by an m-dimensional vector x). These
input and output vectors depend on the nature and purpose of
the kinematic chain. For instance, in a parallel manipulator,
the input vector 6 represents the set of actuated joints, and
the output vector x represents the Cartesian coordinates of the
gripper. However, in general, the output need not be a set of
Cartesian coordinates and can also correspond to joint angles
or displacements. Furthermore, although the number of inputs
and outputs does not have to be equal, the number of inde-
pendent inputs and outputs will always be the same, except
in the presence of redundancies [22], and therefore, vectors
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0 and x can be assumed to be of the same dimension, which
will be equal to the degree of freedom of the linkage, say n.
The relationship between the input and output coordinates is
then written as

F@,x)=0 (N

&

where F is an n-dimensional implicit function of § and x, and
0 is the n-dimensional zero vector. Differentiating (1) with
respect to time leads to the relationship between the input and
output speeds as follows:

Ax +BO =0 )
where
OF OF
A= e B = % 3

and where 4 and B are both n x n Jacobian matrices. Ma-
trices 4 and B are, of course, configuration dependent, i.e.,
A=Ak,0) and B =B(x, 0).

As stated above, singularities occur in configurations where
either A or B becomes singular. Thus, for general closed-loop
kinematic chains, a distinction can be made between three
kinds of singularities that have different physical interpreta-
tions.

1) The first kind of singularity occurs when the following
condition is verified:

det(B) = 0. @

The corresponding configuration is one in which the chain
reaches either a boundary of its workspace or an internal
boundary limiting different subregions of the workspace where
the number of branches is not the same. In other words, this
kind of singularity consists of the set of points where differ-
ent branches of the inverse kinematic problem meet, where
the inverse kinematic problem is understood here as the com-
putation of the values of the input variables from given values
of the output variables. Since the nullity of B— the dimension
of its nullspace— is nonzero in the presence of a singularity of
the first kind, we can find nonzero vectors § for which ¥ will
be equal to zero, and therefore, some of the velocity vectors
X cannot be produced at the output. Typically, these would be
velocities orthogonal to the boundary and directed towards the
outside of the workspace. In such a configuration, we say that
the output link loses one or more degrees of freedom, and by
virtue of the series-parallel dualities [19], this implies that the
output link can resist one or more forces or moments without
exerting any torque—or force—at the powered joints. If the
kinematic chain considered is a mechanism, the first kind of
singularity corresponds to a configuration in which the output
link is at a deadpoint..

2) The second kind of singularity occurs when we have the
following:

det(4) = 0. (5)

This corresponds to configurations in which the gripper is
locally movable even when all the actuated joints are locked.

Fig. 1. Four-bar linkage degeneracy illustrating a singularity of the third
kind.

As opposed to the first one, this kind of singularity lies within
the workspace of the chain and corresponds to a point or a set
of points where different branches of the direct kinematic
problem meet. In the direct kinematic problem, the values of
the output variables from given values of the input variables
should be obtained. Since in this case the nullspace of 4 is not
empty, there exists nonzero output rate vectors ¥, which are
mapped into the origin by A4, i.e., which will correspond to
a velocity of zero of the input joints. In such a configuration,
we say that the output link gains one or more degrees of
freedom, and by virtue of the series-parallel dualities [19],
this implies that the output link cannot resist one or more
forces or moments even when all actuators are locked. If the
kinematic chain considered is a mechanism, the second kind of
singularity corresponds to a configuration in which the input
link is at a deadpoint.

Both the first and second kinds of singularities correspond
to configurations that can happen in a general complex kine-
matic chain.

3) The third kind of singularity is of a slightly different
nature than the first two since it requires conditions on the
linkage parameters. This occurs when, for certain configura-
tions, both 4 and B become simultaneously singular. If some
specific conditions on the linkage parameters are satisfied, the
chain can reach configurations where the position relation,
given by (1), degenerates. This corresponds to configurations
in which the chain can undergo finite motions when its ac-
tuators are locked or in which a finite motion of the inputs
produces no motion of the outputs, such as a linkage hav-
ing a constant branch [23]. For linkages having a quadratic
input—output equation, such as the planar and spherical four-
bar linkages and the spatial RSSR linkage [24], the third kind
of singularity corresponds to a case for which all three co-
efficients of the quadratic equation are equal to zero for a
particular set of configurations. This degeneracy is illustrated
with a planar four-bar linkage in Fig. 1.

The three kinds of singularities will now be illustrated with
some examples of simple and complex closed-loop kinematic
chains.

II. ExampLE 1: PLANAR RRRP MECHANISM

A planar RRRP mechanism is shown in Fig. 2. This one-
degree-of-freedom mechanism is often referred to as a crank-
slider four-bar linkage. Let us consider the crank angle 0 as
the input variable and the displacement of the slider, denoted
as x, as the output. In this case, since we have only one input
and one output, the Jacobian matrices are 1 x 1 matrices, i.e.,
scalars, and will be denoted as 4 and B. From the geometry
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Fig. 2. Planar RRRP mechanism.

of the linkage, we can write:

x=Rcos@+!cosy (6)
and
R sin 0§ =1siny @)
or
5 -
cosxp:ﬂ:\/l—I;—zsinZO. (8)
Substitution of (8) into (6) leads to
x =R cos @ £l\1-r? sin? 6 (9)
where
r= Il_'(’ (10)

The double sign is thus consistent with the fact that the direct
kinematic problem has two branches. Upon differentiation of
(9) with respect to time, one obtains

A% +B6 =0 1

where

A=+1-r2sin®0, .
-B =R sin0(\/1—r2sin? § £r cos §). (12)

Therefore, the first kind of singularity arises when B =0,
i.e., when 6 =0 or «. In this configuration, (9) becomes

x=+R+l (13)

and the links of length R and / are aligned, which corresponds
to the limit of the workspace. Since B is equal to zero, the
value of X will be equal to zero, regardless of the value of 6.
Moreover, a force applied at the output along the direction of
the links will have no effect on the input.

The second kind of singularity occurs when 4 = 0. This
condition leads to ~

sin § = R
The corresponding configuration is shown in Fig. 3. This con-
figuration is clearly within the range of motion of the output,
i.e., within the workspace. Moreover, since the second term
of (9) vanishes, the two branches of the direct kinematic prob-
lem meet. The. output can undergo infinitesimal motion even
if the input is locked. Moreover, the mechanism cannot resist
a force applied at the output along the x axis.

(14)
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Fig. 4. Singularity of the third kind for the planar RRRP mechanism.
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Fig. 5. Watt’s linkage.

As stated above, the third kind of singularity requires that
certain conditions on the linkage parameters be satisfied. For
the example treated here, the condition is that the input and
coupler links have the same length, i.e.

R =1, (15)
Under this assumption, (9) can be rewritten as
X =RcosfO +R cos 6 (16)
or
0
x = amn
2R cos 0

which clearly shows that the mechanism has a constant branch.
Therefore, when x is equal to zero, the input can undergo
arbitrary rotations, whereas the output remains at rest, and
the first two kinds of singularities can meet. This situation is
represented in Fig. 4.

IV. ExaMpLE 2: THE WATT LINKAGE

A linkage of this type is shown in Fig. 5. The mechanism
has one degree of freedom, and the input and output variables
are angles 8 and ¢, respectively. Again, the Jacobian matrices
are scalar quantities.

From the geometry of the linkage, we can write

x = —cos(y +n/3) (18)

and

J1= ﬁ + sin (Y + 7/3) (19)

2
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as well as
o =tan™! (}’_/1) » (20)
Xy
where
x'l =x1-1/2 21
and
I; sin 6 —V/3/2
—1 1
= GG Sk Sl 22
B =tan (11c0s0+1/2> (22)

Moreover, using the law of cosines, we obtain

G =0 +x{ +y} =23\ /x7 + ¥} cos(a —¢) (23)

and

=1+, cos 8 +1/2)* + (I, sin 6§ —v/3/2)

—2\/(11 cos 6 + 1/2)2 +(I; sin § — v/3/2)?
- cos (Y — B).

Given a certain value of the input angle 8, angle y can be com-

(24)

puted from (22) and (24), and then angle ¢ is obtained from.

(20), (21) and (23). Upon differentiation of these equations
with respect to time, the following is.obtained:
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with
Ny =, cos 8 — V3l sin 0 +12 +1%)
-(1/21, sin 8 + \/3/21, cos 6)
+2 sin(y — )2 +1/21, cos § — /221, sin )

'x\/l—\/gll sin 6 +/; cos 6 +13 (33)
Ny =sin Y(x? + 2 +12 —13)
+2/3 sin (o — ¢)(1 4 cos )4 /x2 + y2 34)

Dy =2 sin(y — B)(1 — V3l sin 8 +1; cos 8 +12)>2(35)

D, =23 sin(a — o) (x 7 + y3)*2. (36)

The first kind of singularity occurs when B =0, i.e., when

Ny =0o0or N, =0. 37

The first condition corresponds to the set of configurations
in which links /; and /, are aligned, which clearly defines
a boundary of the workspace. The second condition corre-
sponds to configurations where link /4 is aligned with the line
connecting joints 4 and 5, which again defines a limit position
of the output link. In these configurations, the velocity of the
output is always zero, regardless of the input velocity.

The second kind of singularity, i.e., the one in which the
velocity of the output link can be nonzero even if the input

¥ =(C1+C,) (25) Vvelocity vanishes, occurs here when A is equal to zero, i.e.
where " Dy=0o0rD,=0. (38)
(V3 sin 6 =1 cos § —I1H)(1 = 1/21; sin 6 — v/3/2], cos 6) 26)
2 sin (¥ — B)[(1/2 +1; cos 6)* + (I, sin 8 — /3/2)2 ]/
and The first condition can be rewritten as
2 _ ; P .
) = I1+1/2 cc>2s0 \/’?/211 sin 8 _en sin (¥ — §) = 0 (39)
(/1 cos 8 +1/2)? +(/; sin 8 —/3/2)

In addition which corresponds to configurations in which link /; is aligned
1 additio with the line connecting joints 3 and 4. This kind of config-
¢ = Cl%1 +Chin (28) uration is shown in Fig. 6, where it is clear that the output
link can undergo an infinitesimal motion even if the input is

where locked. The second condition can, in turn, be rewritten as

12 2 2 2
- Iy —103) .
Cl - Y1 X"y -1 29 N
VT Tl sina oG D) sin(e=9) =0 “0)
and which corresponds to configurations in which links /3 and /,
, n 2 n are aligned.

ch—_ %1 nba +yitl-h) (30)  The conditions on the link lengths required for the third

2= . .
x?+y1 2 sin(a - o)x? + ¥

Therefore, the relation between the input and output velocities
can be written as

Ad +Bf =0 (31

where
A=DD,,

B =N|N; (32)

kind of singularity are given by the following:
11212:101‘]3 =14:1. (41)

When the first equality above is verified, the mechanism can
reach configurations where joints 2 and 4 are superimposed,

. and the output can then undergo finite motions while the input

is at rest. As a matter of fact, since links /; and /, are aligned
with the lines connecting joints 1 and 4 and joints 3 and 4,
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@ fixed joint
O D
Fig. 7. Planar three-degree-of-freedom parallel manipulator with revolute

achuators.

respectively, they become kinematically irrelevant, and the
whole linkage is reduced to a four-bar planar linkage.

On the other hand, if the second equality of (41) is verified,
the mechanism can reach configurations where joints 4 and 6
are superimposed. In this case, links /3 and /4 become irrele-
vant, and the linkage has a constant branch, i.e., a branch on

which the output link remains at rest. ;

V. ExaMPLE 3: PLANAR THREE-DEGREE-OF-FREEDOM
MANIPULATOR WITH REVOLUTE ACTUATORS

A planar parailel manipulator is represented in Fig. 7, all
of whose joints are of the revolute type, and the three motors
My, M,, M5 are fixed. The manipulator consists of a kine-
matic chain with three closed loops, namely M;DABEM,,
M,EBCFM;, and M3FCADM,, where the gripper is
rigidly attached to triangle ABC. It is pointed out here that
only two of the aforementioned loops are kinematically inde-
pendent according to the definition given in [22].

This manipulator was studied in detail in [25]. It is assumed
here that the manipulator is symmetric, and therefore, the mo-
tors will be located on the vertices of an equilateral triangle,
and the link lengths will be the same for each leg, i.c.

L =1 =17, i=1,2,3. 42)
Moreover, in that which follows, the distance between any
two of the motors will be set equal to unity for normalization
purposes. Triangle ABC will be referred to as the gripper be-
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cause it is kinematically equivalent to this. It is now recalled,
from [25], that the following relation holds:

AS+Bo =0 (43)

where 0 = [91, 92, 93]T is the vector of joint rates, and § =
[x,»y, ¢]” is the vector of Cartesian velocities. Moreover, A
and B are the following:

a b] (]
A=|a by c|, B=diag(d),d) d;) (44)
as b3 C3

where, fori =1,2,3

. I .
a; =2,y \/X%, + y%; sin s +viEixy (45)
bi = —21 x5 \[x%; + ¥3; sin ¥ +viEiya (46)

c; =23 \/X%,- + ¥3; sin Y;i(x2; cos ¢; + yoi sin @;)
+ viEil3(x2; sin ¢; — yy; cos ¢;)
d; = 201(x3; + y3)%? sin

(47
(48)

where variables E; and ¢; are defined, fori =1, 2, 3, as

Ei =6 - +x3 + 5 (49)

$ =¢+7/6 (50)

$s = b +57/6 1)

3 =0 —7/2 (52)

with
% = cos™! -0+ x5 + y5 (53)
2y x3; + 5
X2 =X —1I3 cos ¢; — x4 54
Y2 =y —l3sin¢; — yo (35)

where (x,;, Voi) are the coordinates of the center of the ith
motor. Moreover

yi= %1 (56)

is a factor that depends on the branch we chose for the ith leg
in the solution of the inverse kinematic problem.

The potential applications of this manipulator include pick-
and-place operations over a planar surface, machining of pla-
nar surfaces, mobile bases for a spatial manipulator, and mov-
ing platforms for a terrestrial vehicle simulator.

The three kinds of singularities discussed above are now
derived for this manipulator, and the physical significance of
each of these types of singularities is presented.

It is recalled that the first kind of singularity corresponds
to the limit of the workspace and that it occurs when the
determinant of B vanishes. This condition is.encountered here



286

when one of the diagonal entries of B vanishes, i.e., when

di =0, i=1or2or3. 57)
From (48), either of these leads to
sin y; =0, i=1or2or3. (58)

This type of configuration is reached whenever the links of
lengths /, and /, of one of the legs are aligned, as one can
readily infer by inspection of Fig. 7. Moreover, since the so-
lution of the inverse kinematic problem leads to two branches
per leg, the corresponding quadratic equation leads to two
solutions when the input Cartesian coordinates are located in-
side the workspace of the manipulator and to no real solution
when the prescribed Cartesian coordinates are not within the
workspace. Therefore, the limit of the workspace is defined by
the set of points for which the quadratic equation will lead to
only one solution, i.e., when we have the following condition:_
i=1lor2or3 (59)

¥ = *nw, n=0,1,2,---

which is equivalent to (58). Since in this type of configuration
the ith leg is fully extended or folded, the set of Cartesian
velocities of the gripper that correspond to a velocity of the
point of attachment of the ith leg to the gripper along the
folded or extended leg cannot be produced. This set of Carte-
sian velocities is given by the set of rotations of the gripper
about an arbitrary point of a line passing through the ith point
of attachment of the gripper and orthogonal to the ith leg.
Moreover, a force applied at the gripper along the direction
of the pair of aligned links will not affect the actuators.

The second kind of singularity, which is located inside the
workspace of the manipulator, occurs when the determinant of
A vanishes. For this type of configuration, there exists nonzero
Cartesian velocities 8, which are mapped into the zero vector
by A. These Cartesian velocities are then possible even when
the rates of all motors are zero. These configurations can be
inferred from (44) by imposing the linear dependence ¢f the
columns of 4, i.e.

kia; + kyb; +ksc; =0, i=1,2,3 (60)
for some real values of k1, k», and k3, where not all of them
are zero.

By inspection of (60) and (45)—(47), two different cases for
which the condition given by (60) is satisfied can be identified.
The first one is obtained when the lines along each of the three
links of length /, intersect. In this case, we have

ci=cy=c3=0 (61)
and hence, (60) can be satisfied with k1 = k2 = 0 and arbi-
trary k3. The last column of the Jacobian matrix is equal to
zero, and hence, the nullspace of A is spanned by [0, 0, 117.
This nullspace corresponds here to the set of pure rotations of
the gripper about its centroid. This set of velocity vectors will
produce motor rates of zero, due to the transitory additional
degree of freedom. A configuration of this type is shown in
Fig. 8. Again, by virtue of the series-paraliel dualities [19],
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Fig. 8. Example of the second kind of singularity for the planar three-

degree-of-of-frecdom parallel manipulator.

the manipulator will not be able to withstand a torque applied
at the gripper.

The second case for which (60) can be verified is the set of
configurations for which the three links of length /, are paral-
lel. Indeed, by inspection of (45) and (46), we can define a set
of vectors v;, i = 1, 2, 3, as the following two-dimensional
vectors:

vi = [ai, bi]" (62)

where it is clear that v; is the vector connecting the joint com-
mon to links /; and /5 of the ith leg to the point of attachment
of link /5 of the same leg to the gripper, i.e., v; is a vector
along the two joint centers of the link of length /». Therefore,
when the three links of length /, are parallel, we have

v = +vy, = +v; (63)

and the second column of 4 is a multiple of the first one.
In this case, the nullspace of A represents the set of pure
translations of the gripper along a direction orthogonal tov;, -
i.e., orthogonal to the three links of length /5. A velocity of
the gripper of that nature would produce motor rates of zero,
and a force applied to the gripper in that direction cannot be
balanced by the actuators.

It is to be noticed that the results presented above for the
second kind of singularity of the revolute-based planar three-
degree-of-freedom manipulator are in full agreement with the
ones reported in [12].

The third kind of singularity is characterized by the undeter-
minacy of (43). In other words, the manipulator architecture
allows for the vanishing of both det(4) and det(B).

As mentioned above, this singularity is not only
configuration- but also architecture-dependent. For the pla-
nar manipulator studied here, two situations may produce it.
One of these two cases happens when we have

V3

11=—3~and12=13. (64)
With these constraints on the link lengths, we can reach a
configuration where the tip of each of the three links of lengths
I, meet at the centroid of the base triangle, which coincides
with the centroid of the gripper since /; = /3. The gripper
can then undergo arbitrary rotations about its centroid while -
the motors remain at rest. This indeterminacy is due to the
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zeroing of both the c;’s and the d;’s when the gripper is
oriented such that ¢ = 0. At this particular point, both the
first and second kinds of singularities meet.

The second case of degeneracy of the manipulator requires
the following conditions:

1| ‘:12 and 13 = 1/3
3

In that case, the gripper is of the same size as the base triangle.
Therefore, when the three vertices of the gripper are located
at the centroid of the motors and when angle ¢ is equal to
zero, the motors can undergo arbitrary rotations while the
gripper remains at rest. Again, the first kinds of singularities
meet here, i.e., when angles 0y, 02, and 65 take on the values
—150°, —30°, and 90°, respectively, then both the ¢;’s and
the d;’s are equal to zero.

(65)

VI. ExampLE 4: SPHERICAL THREE-DEGREE-OF-FREEDOM
PARALLEL MANIPULATOR

This type of parallel manipulator was described in [26] and
studied in detail in [27]. A spherical parallel manipulator can
be applied as an orientation wrist in robotics. Applications
outside of robotics that could be mentioned are mechanisms
for the orientation of machine-tool beds and workpieces, solar
panels, antennas, etc., hence the motivation to study this type
of kinematic chains.

A spherical parallel manipulator is represented in Fig. 9, all
of whose joints are of the revolute type, and the three motors
My, M5, M5 are fixed. The manipulator consists of a kine-
matic chain with three closed loops, namely, M DABEM,,
M,EBCF M3, and M3FCADM,, and the gripper is rigidly
attached to triangle ABC. Again, only two of the loops are
independent. As for the case of the planar manipulator, a
symmetric layout has been chosen here. By symmetry, then,
the axes of the motors will be located in a common plane,
intersecting a point defining the center of the spherical ma-
nipulator. Moreover, the joints attached to the gripper; have
the saime relative orientation, and the link angles will be the
same for each leg, i.e.
i=1,2. (66)

' ”
QG = Q; = O,

The expression of the Jacobian matrix of the manipulator
is now recalled from [27]. Let us define u; as a unit vector
along the axis of the ith input motor and v; as a unit vector
along the axis of the revolute joints connecting the gripper,
the adjacent link, and w;, which is a unit vector along the axes
of the intermediate revolute pairs of each leg fori = 1, 2, 3.
We then write the differential kinematic relations as

Aw +BO =0 (67)

where w is the angular velocity of the end effector, and 6 is
the vector of actuated joint rates. Matrices 4 and B are
(W] X Vl)T
A=

w2 xva)T (68)

w3 xv3)l
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Fig. 9. Spherical three-degree-of-freedom parallel manipulator.

B =diag(w; xu, -vy,wy XUy -va, w3 Xus -v3). (69)

The first kind of singularity is known to lie on the boundary
of the workspace and appears whenever det(B) = 0. The
conditions under which the kind of singularity arises can be
obtained from the expression of B given above, i.e.

w; xu;)-v; =0, i=1lor2or3. 70)
Equation (70) states that vectors ;, v;, and w; are coplanar,
i.e., that the corresponding leg is totally unfolded or folded.
When such a configuration is attained, a certain set of veloc-
ities of the gripper cannot be produced. This set of velocities
corresponds to the motions of the gripper that involve a veloc-
ity of the point of attachment of the fully extended or folded
leg to the gripper along the direction of the leg. However, a
torque applied to the gripper that would involve a force along
the fully extended or folded leg would not produce any torque
at the actuators but would be resisted by the manipulator.

The second kind of singularity—which occurs when
det (4) = O—appears in configurations in which nonzero an-
gular velocities of the gripper are possible even if the three
motors are locked. For the spherical manipulator, the con-
dition under which det(4) = O can be derived from ex-
pression (68). Since, by definition, vectors w; and v; can-
not be identical, this condition is that the three vectors
w; xv;, i =1, 2, 3) are coplanar. Since v, v,, and v3 are
coplanar, this condition states that the three planes defined,
respectively, by the pairs of vectors (v;, w;), fori =1, 2, 3,
either have a common intersection along an axis or are iden-
tical. This corresponds to configurations in which the links of
dimension o, either lie on the plane of the gripper or are or-
thogonal to this plane. In each of these cases, a velocity of the
gripper that leaves the actuators at rest is possible, and there
exists a torque, which when applied to the gripper, could not
be balanced by the actuators.

Two sets of spherical manipulators for which the third kind
of singularity can occur are identified here, where the second
one is a subset of the first one.

First, for the set of spherical manipulators having o; = a5,
the configuration in which we haveu; =v; fori =1,2,3 is
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attainable, and it constitutes a special case because condition
(70) is verified for all three legs. Therefore, in this case,
any motion of the input links will not affect the gripper since
the former are just rotating, together with the intermediate
link, around the axis defined by vectors u; =v;, leaving the
gripper at rest. The rank of B is then equal to zero in this
configuration, i.e., none of the three Cartesian components
of w can be produced in the said configuration. Moreover,
if01 =02 = 03 =0or if0| = 02 ‘—‘03 = 1l'/2, from the
discussion above, the first and the second kinds of singularitics
meet.

Furthermore, if we have, more specifically, oy = ay =
/2, all the configurations for which vy, v;,v3 are coplanar
tou,u,,us are singular. This set of configurations is char-
acterized by the fact that the gripper can be rotated around
the axis orthogonal to the plane defined by vectors u, u2,u3
without moving the input links.

VII. ExaMPLE 5: SPATIAL S1X-DEGREE-OF-FREEDOM PARALLEL
MANIPULATOR

This type of device is very well known for its application in
flight simulators, and several authors have been considering
using it as a robotic manipulator [12], [28], [29]. The notation
used here is consistent with the one used in [22]. Therefore,
the manipulator is as shown in Fig. 10. The points of attach-
ment of the legs, i.e., the centers of the spherical joints, are
located on the base and on the platform as is shown in Figs.
11 and 12, i.e., on the circumference of circles of radii Rp
(base) and Rp (platform), respectively. The points of attach-
ment are grouped by pairs, which are uniformly spaced along
the circle, and they are denoted by B; and P; fori =1,---,6.
Furthermore, the position vectors of point B; and P; are given
by vectors b; andp; fori =1,---,6, respectively, in a coor-
dinate frame fixed to the base of the manipulator. The position
vector of point P; in a coordinate frame fixed to the platform
is, in turn, given by vector p;. We can write

Rp cos 6; 7
b;i=|Rgsinb; |, i=1,---,6 an
0
~ where
601 [ e8]
0, 27/3 — ¢
05 27/3 + ¢B
0= = (72)
04 41r/3 —¢B
0s 47 /3 + ¢p
Los- | —¢5
and
Rp COS ;i
p:'—" RP sin Ni|» i =13"',6 (73)
0
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Fig. 11. Position of the joints on the base.

Fig. 12. Position of the joints on the platform.

where

Kl B
L7 2n/3 —¢p
m 21!'/3 + ¢P

7= = (74)

N4 47 /3 — ¢p
75 47 /3 + ép

[ 76 L —9p

Moreover, we denote the position vector of the center of the
platform, i.e., the center of the circle in Fig. 12 by x, whereas
the rotation matrix defining the orientation of the platform is
denoted by Q. Hence, the solution of the inverse kinematic
problem can be written as

Ci=\/l/:?+V,2+W’,2,

Ui =x +guRp cos i + quRp sin 9; — Rp cos 9; (76)

i=1,---,6 (75)

where
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V; =y +QZ|RP COS ;i +Q22Rp sin Ni —Rp sin 0,‘ (77)

W; =2 +quRp cos 1; +q3Rp sin y; €]

in which ¢; is the length of the ith leg, and variables x, y, z,
and g;; for i, j = 1, 2, 3 are the components of the Cartesian
coordinates, i.e., vector x and matrix @, respectively.

The velocity relation (2) can be written as

Ay +Bé =0 (79)

where ¢ and y are defined as ¢ = [¢y,---,¢6) and y =
[*, ¥, 2, w1, w2, w3}’ in which the angular velocity of the
platform is defined as w = [w;, wy, 3)7. In addition, we
define a set of vectorsw;,i =1,---,6 as

U;

W; =Cie; = Vi 1y i = 1,"' (80)

W;

where e; is a unit vector along the ith leg pointing from the
base to the platform. Hence, we have

-aTI'-
aj
A= (81)
ag |
where
a; =w!, {@p) xw}'T, i=1,---,6 (82)
and
B = diag(cy,---,cC6)- (83)

If we assume that the prismatic actuators of the manipulator
have an infitite range of motion, the result is an infinitely }arge
workspace, and the first kind of singularity occurs only when
one of the actuators has a length of zero, i.e.

¢;=0i=1o0r2or---6. (84)

From (83), it is readily seen that this situation produces a
singular B matrix. This is so because the direction of the
prismatic joint is undefined in these configurations.
However, in a real manipulator, the actuators have a finite
range of motion, i.e.
Crmin <€ < Cpnax

(85)

and where ¢ nq is, in general, different from zero. In this case,
the first kind of singularity occurs when one of the actuators
reaches one of its limits, i.e.

Ci = C min OF C; = C max, i=lor2or---6 (86)

which corresponds to the limit of the workspace. Since one of
the actuators cannot move further in one direction, a certain
set of gripper (platform) velocities cannot be produced, and
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a certain combination of forces and moments applied to the
gripper does not affect the actuators.

The analysis of the second kind of singularity is more com-
plicated because it entails finding the condition under which
matrix A is singular. This is still a subject of current re-
search [12], [28]-{30]. In [29], Grassmann geometry is used
to identify the singularities. This geometrical approach, which
is similar to the use of serew theory, is justified here because
it can be seen from (82) that the rows of matrix A are un-
normalized Plicker coordinates of lines along the legs of the
platform. In the formulation of equations presented here, ma-
trix A is slightly different from the Jacobian matrix used in the
other references [12], [28], [29] because the introduction of
matrix B allowed us to eliminate the denominators in the Ja-
cobian matrix—this is why we obtain unnormalized Pliicker
coordinates—and hence, the expression obtained for the de-
terminant is a little simpler. However, it seems that for this
case, geometrical approaches have so far produced better re-
sults than analytical ones.

The third kind of singularity occurs when the following
conditions-are verified:

Rp=Rpand @ =9y 87

With this special geometry and in a configuration where
all actuator lengths are the same, the platform can undergo
motions of a finite amplitude even if the actuators are locked.
Indeed, in such a situation, all legs are parallel, and the plat-
form can undergo translations that would arbitrarily position
the center of the platform on the surface of a sphere of radius
equal to the length of one leg and centered at the center of
the base circle. The orientation of the platform is such that
O =1 and is preserved throughout this motion. In this case,
the first two kinds of singularities can meet when all legs have
the same length and reach one of their limits.

VIII. CoNCLUSION

A general classification of the different kinds of singular-
ities encountered in closed-loop kinematic chains was given.
Three main kinds of singularities were identified, and their
physical significance was described. The classification was il-
lustrated through a series of examples, which included closed-
loop mechanisms and parallel manipulators. The results ob-
tained here can be used for the identification of the singulari-
ties of these mechanical systems, which is an important issue
in design and control.
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