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6-DOF Parallel Manipulators

This paper presents an algorithm for the determination of the workspace of parallel
manipulators. The method described here, which is based on geometrical properties
of the workspace, leads to a simple graphical representation of the regions of the
three-dimensional Cartesian space that are attainable by the manipulator with a

given orientation of the platform. Moreover, the volume of the workspace can be
easily computed by performing an integration in its boundary, which is obtained
Jfrom the algorithm. Examples are included to illustrate the application of the method
to a six-degree-of-freedom fully parallel manipulator.

1 Introduction

Over the last decade, several researchers have addressed the
problem of the analysis, design, and control of parallel ma-
nipulators (see for instance the references at the end of this
paper). The idea behind these manipulators is that they exhibit
a better rigidity—and therefore a better load-carrying capac-
ity—than common serial manipulators. Hence, they are of
great interest for applications where heavy loads or high speed
and precision are needed.

MacCallion and Pham (1979) have suggested to use a parallel
device as a workstation for assembly. Then, after a systematic
review of the different kinematic possibilities for parallel ma-
nipulators, a few architectures of fully parallel devices emerged
as the most promising designs (Hunt, 1983). These architec-
tures have been studied in more detail by other authors. Yang
and Lee (1984), Mohamed and Duffy (1985), Fichter (1986),
and Merlet (1987, 1988) studied the six-degree-of-freedom fully
parallel manipulator which is represented in Fig. 1. On the
other hand, Gosselin and Angeles (1988, 1989) reported on the
analysis and optimization of planar and spherical three-degree-
of-freedom parallel manipulators whereas Lee and Shah (1988)
worked on the design of a spatial three-degree-of-freedom
parallel manipulator. As an alternative design, Inoue et al.
(1985) have developed a six-degree-of-freedom parallel ma-
nipulator based on parallelogram mechanisms.

However, as most of the authors mentioned above have
pointed out, the major drawback of parallel manipulators is
their limited workspace. Hence, it is of primary importance
to develop some efficient tools that will allow us to determine
their workspace. Moreover, in the context of design, the work-
space determination procedure should be simple enough to be
included in an optimization cycle. Asada and Youcef-Toumi
(1984) and Bajpai and Roth (1986) have studied the reachable
workspace of a closed-loop planar two-degree-of-freedom ma-
nipulator using the kinematic equations of planar five-bar
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mechanisms and Gosselin and Angeles (1988, 1989) have used
geometric considerations to evaluate and optimize the work-
space of planar and spherical three-degree-of-freedom manip-
ulators. However, the workspace of spatial six-degree-of-
freedom parallel manipulators has been described only through
methods based on a complete discretization of the Cartesian
space (Yang and Lee, 1984; Fichter, 1986; Merlet, 1987, 1988).

In this paper, sections of the workspace of six-degree-of-
freedom parallel manipulators are obtained geometrically.
Since the workspace of a six-degree-of-freedom manipulator
is embedded in a six-dimensional space, it is very difficult to
represent. The workspace determined here is the positioning
workspace, i.e., the region of the three-dimensional Cartesian
space that can be attained by the manipulator with a given
orientation of the platform. This is in fact a three-dimensional
section of the six-dimensional workspace but any of these
sections can be obtained with the method described here. First
of all, the inverse kinematic problem of a parallel manipulator
is considered and its solution, which was derived somewhere
else, is used to establish regions in space whose intersection
will result in the workspace. Then, an algorithm for the com-
putation of that intersection is developed and extended to

Fig. 1 Spatial six-degree-of-freedom parallel manipulator
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include the computation of the volume of the workspace. Fi-
nally, an example of application of the method to the INRIA
prototype will be presented.

2 Inverse Kinematics

The solution of the inverse kinematic problem is now re-
derived in order to clearly establish the notation used here.
Let us consider a fixed coordinate frame R : O — xyz attached
to the base of the manipulator and a moving coordinate frame
R’ : O’ — x’y’z’ attached to the platform, where O’ is the
point to be positioned by the manipulator (Fig. 1). Moreover,
the center of the joint connecting the ith leg to the base will
be denoted as A; whereas the center of the joint connecting
the same leg to the platform will be denoted as B;. Therefore,
vectors (@, i = 1, ..., 6), will be defined as the position
vectors of the base joints, which are constant vectors when
expressed in frame R, and vectors (b;, 7 = 1, . . ., 6) will be
defined as the position vectors of the platform joints, which
are constant when expressed in frame R’. Furthermore, let Q
be the rotation matrix describing the orientation of R’ with
respect to R, i.e., the orientation of the platform with respect
to the base, and let p; be the length of the ith leg. If the position
of point O’ with respect to the origin of the fixed coordinate
frame R is denoted by vector [rlz = [X,, ¥, 2,17, we can write

[b)r=[rlg + Qiblz’, ., 6] 1

where the subscript outside of the brackets indicates in which
coordinate frame the vector is expressed. Now, subtracting
vector a; from both sides of equation (1) leads to

[b;~ale=Irlzg+Qlblr' —[alz, i=1,...,6 (2

The left-hand side of equation (2) is clearly the vector—along
the ith leg—connecting point A4; to point B; and, therefore, by
taking the Euclidean norm of each side of equation (2), we
obtain

pi=l[b;—ajzl =1 [rlg+Qblg’ —[adell, i=1,...,6 @)

Hence, for given values of the positions of the joints on the
base and on the platform, i.e., for a given manipulator, and
for prescribed values of the position and orientation of the
platform, the required actuator lengths can be directly com-
puted from equation (3) which is in fact the solution of the
inverse kinematic problem. In scalar form, equation (3) can
be rewritten as

p?=(xr'.ui)2+ (y,—v,-)2+ (zr——wi)29 i=l ..., 6 (4)

i=1,..

where
i=1,...,6 %)

i=1,...,6 (6

Zoi— Q31 Xpi— G32Ybi— G33%is 1=1,...,6 @)

where g;; stands for the (/,/) entry of the rotation matrix Q,
and where the components used in equations (5-7) are defined
as:

il

U; Xai — 411 Xpi — 912V bi — 413%bis

Vi = Yai— G21Xpi — 922Ybi — 923%0is

w; =

[ai]R= [xai,yﬂiszai]Ts i= l’ e e 6 (8)
iz’ =[XpiVirzed’s i=1,...,6 o)

3 Geometric Description of the Workspace

The solution of the inverse kinematic problem developed
above can be used to describe the workspace of the parallel
manipulator. Indeed, if mechanical interferences are neglected,
the boundary of the workspace is attained whenever at least
one of the actuators reaches one of its limits. If we assume
that the range of motion of the actuators is given by

Prmin <Pi<Pmaxs i=1l,...,6 10
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then the boundary of the workspace can be described as the
set of points for which we have

Pi=Pmin OF  Pi=Pmax an
for at least one of the legs while all other actuators have lengths
that are within their range of motion. Using the development
of section 2, we can rewrite condition (11) as:

= )+ (1= 02+ (2= W)=y, (12)

or
(13)

Moreover, for a given orientation of the platform, i.e., for a
specified matrix Q, quantities u;, v;, and w; become constant
and equations (12) and (13) represent concentric spheres of
radii ppinand ppay. respectively, which circumscribe the portion
of the three-dimensional Cartesian space attainable by the jth
leg. However, it is pointed out that the center of the spheres,
given by point C; (&, v;, ;) does not coincide with the center
of the joint connecting the ith leg to the base, but is rather
given by:

=)+ (7= 0+ (2~ W) =Pl

U;
v; | =lalz—[blr=[alzg—Qblr’, i=1,...,6
Wi

(14

This is so because the description of the workspace given by
equations (12) and (13) has to take into account the geometry
of the platform. In other words, the concentric spheres rep-
resent the trajectory described by point O’ of the platform
when the ith leg, with minimum or maximum extension, is
rotated about its fixed spherical joint—Iocated at point 4—
while the attitude of the platform is maintained unchanged.
Therefore, vector [b;]g has to be subtracted from [a] 5, as shown
in Fig. 2, in order to obtain the center of the sphere C;. The
smaller sphere is obtained with p; = py;, and the larger one
with p; = pmax. Hence, for a given orientation of the platform,
the workspace of the parallel manipulator in three-dimensional
Cartesian space can be described as the intersection of 6 re-
gions, each of these regions being the difference of two con-
centric spheres. The position of the centers of the spheres will
depend on the kinematic parameters of the manipulator and
on the orientation specified for the platform.

A section of the workspace can then be obtained by taking
a section of the spheres described above, i.e., by taking the
intersection of the spheres with a plane. This will lead to 6
pairs of concentric circles. For instance, if it is desired to find

Platform

Pi

Fig. 2 Location of the center of each of the spheres used to compute
the workspace
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the section of the workspace on a plane parallel to the xy plane,
defined as z = zg, then equations (12) and (13) are rewritten
as:

o= u)*+ (- 0) =R, )
=)+ (7~ v)*=RZ,,, (16)

where we have

R .= Ploin— @r= W), if Pl — @u—w)*>0 a7
=t o, otherwise

and

2 —_w) if o2 — —w)?
g - {pm—(zy W i = G WP>0

" 0, otherwise

The radii of the concentric circles are given by Ry, ; and Rpy ;
respectively. It is to be noted that the condition in equations
(17) and (18) is introduced to take into account the cases for
which the sphere does not intersect the given plane.

Similarly, if the section of the workspace on a plane parallel
to the xz plane, defined as y = yg, is to be obtained, then
equations (12) and (13) can now be rewritten as:

(xr_ui)2+ (zr"wi)2=Rr2nin,i (19)
(% —u)+ (z,—w)*=R%,, (20

e

where we have, in that case
P — G- )3 if p2y — (g —v1)*>0

2
in,i @1
i 0, otherwise
and -
5 Prx— =05 if L — (P~ v:)*>0
Rmax,i = ’ . : (22)
0, otherwise

A section of the workspace can therefore be determined by
finding the intersection of 6 annular regions, i.e., six regions
defined as the difference between two concentric.circles. An
algorithm for the solution of this problem is proposed in the
next section,

4 Algorithm for Workspace Evaluation

The intersection of the 6 annular regions described above
can be obtained geometrically. Two important observations
concerning the characteristics of the workspace of the parallel
manipulator have to be made at this point.

Observation 1: Since the workspace in three-dimensional
Cartesian space is obtained by the intersection of regions
bounded by spheres, we can conclude that the boundary of
the workspace will consist exclusively in a set of portions of
spheres.

Observation2: The second observation follows from the first
one. Indeed, since a section of the workspace is obtained by
the intersection of regions bounded by circles, then the bound-
ary of that section will be made up of circular arcs, i.e., portions
of circles.

The algorithm that is now described is based on the second
observation. The procedure followed to obtain the section of
the workspace on planes parallel to the xy plane is presented.

As discussed in the previous section, if the section on a plane
parallel to the xy plane is needed, equations (12) and (13) are
rewritten as equations (15) and (16) which represent circles in
the plane of the section. Therefore, the problem is now to find
the intersection of the 6 annular regions. As stated in obser-
vation 2, the boundary of this intersection will consist in a
series of circular arcs connected to each other. It is possible
to identify the arcs that are potential candidates for a portion
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of the boundary of the workspace by computing the intersec-
tion of each of the circles with all the other ones. This is the
first step of the algorithm.

STEP 1: For each of the circles described in equations (15)
and (16), find all the intersections with the other circles.

Computing the intersection of two distinct circles is a
straightforward procedure which can yield to 0,1 or 2 solutions.
Once all the intersection points are obtained, they have to be
ordered so that each circle is divided in a set of circular arcs.
If nointersection is found on a particular circle, it is represented
as only one circular arc, i.e., the circle itself. The second step
can be stated as:

STEP 2: Obtain all the circular arcs defined by the intersec-
tion points found on the circles by ordering these points.

Now, since all the circular arcs found in the previous step
will not be part of the boundary of the workspace, we have
to use a checking procedure to identify the arcs that constitute
the boundary of the workspace. The following test, which is
based on equation (11) and the condition attached to it, is
used: for a given arc, belonging to a given circle, we choose
a point lying on the arc—preferably not one of the end points—
and check whether or not this point is located inside all the
other external circles and outside all the other internal circles.
The terms internal and external circles refer to the inner and
outer limits of each of the annular regions. In other words,
the circle to which the arc belongs is eliminated and the test
is performed on the 11 other circles. Clearly, when the arc is
within all the outer circles and outside of all the inner circles,
it constitutes part of the boundary of the workspace. This test
is equivalent to the condition attached to equation (11), i.e.,
that all the actuators have lengths within their range of motion.
If the test fails, then the arc is rejected. Step 3 of the algorithm
then becomes: .

STEP 3: Perform atest on each of the circular arcs identified
in step 2 in order to determine which ones constitute the bound-
ary of the workspace. The test consists in checking if the arc—
one point on it will be used in practice—is within all the other
outer circles and outside all the other inner circles.

When these operations are completed, we have a list of
circular arcs which constitute the boundary of the workspace.
Some of these arcs may be portions of inner circles whereas
others may be portions of outer circles. It is pointed out that
the procedure described above for finding sections of the work-
space on planes parallel to the xy plane is also applicable to
the determination of the sections on other planes. For example,
sections on planes parallel to the xz plane are obtained by using
equations (19) and (20) instead of equations (15) and (16).

The next problem to be addressed is the computation of the
area of the sections of the workspace. Since we have an accurate
description of the boundary of the workspace, i.e., the list of
circular arcs obtained above, it is natural to determine the area
by performing the integration on the boundary. This technique
was used in Gosselin and Angeles (1988) to compute the volume
of the workspace of a planar manipulator. It is based on the
Gauss Divergence Theorem (Brand, 1955), which can be ap-
plied to planar regions to give:

1
A=3 San s+ndogQ 23)

where
A = area of the planar region

dQ = the boundary of the planar region
s = the position vector of an arbitrary point of 3Q
n = the outward unit normal vector to the curve dQ

In the present case, since the workspace is described as a
series of circular arcs, equation (23) can be rewritten as:
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Table 1 Geometric properties of the INRIA prototype (all lengths are
given in mm)

i 1 2 3 4 5 6
Zoi 92,58 |l 132.58 || 40.00 -40.00 || -132.58 || -92.58
Yai 99.64 | 30.36 | -130.00 | -130.00 | 30.36 | 99.64
Zai 23.10 [ 23.10 23.10 23.10 23.10 { 23.10
Tpi 30.00 || 78.22 48.22 -48.22 || -78.22 | -30.00
Yoi 73.00 [ -10.52 || -62.48 || -62.48 [l -10.52 || 73.00
2bi -37.10 | -37.10 || -37.10 || -37.10 j| -37.10 | -37.10

Simin || 454.5 [| 454.5 454.5 454.5 454.5 || 454.5
Simax || 904.5 || 504.5 504.5 504.5 504.5 504.5

YA

(h,9) z
Fig. 3 Geometric description of the ith arc
1 G
A=3 Y A (24)
i=1"
with
A= ‘s‘anis-ndaﬂ,- (25)

where N, is the number of arcs constituting the boundary of
the workspace and 9%; is now the ith circular arc. Moreover,
if the ith arc is described as shown in Fig. 3, i.e., using the
position of its center of curvature given by vector [, g]7, its
radius of curvature r, and the angles corresponding to the end
points, given by 6, and 0,, respectively, using a counterclock-
wise convention, and with respect to a fixed coordinate frame
O—xy, then vectors s and n can be written as:

h rcosf
s= . 26)
g rsinf
and
N {[cose, sind}7, if the arc is on an outer circle N
- [—cos, —sinf]7, if the arc is on an inner circle

This is so because the normal vector n, as defined in equation
(23) has to be pointing towards the outside of the area of
interest. Hence, by substituting equations (26) and (27) in equa-
tion (25), we get:

A;= grsind, — sin8,] + hr{cosf, — cost] + P[0, ~6;] (28)
for an outer circle and
A;= — grlsin8, — sinf,] — Ar{cosh, — cosd;] — P[0, —6,] (29)
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Fig. 4 The 6 pairs of concentric circles defined by equations (15) and

(16) for z = 512 mm
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Fig. 5 The circles of Fig. 4 are divided in a series of circular arcs

for an inner circle. It is recalled from above that 8, and 6, are
the angles corresponding to the beginning and end points of
the given arc. This computation is easily included in the al-
gorithm described above. Indeed, when a circular arc is de-
clared valid by the test performed in step 3 of the algorithm,
one only has to compute its contribution to the area by using
either equation (28) or equation (29). The summation of all
the contributions as shown in equation (24) will yield the area
of the section of the workspace.

When the above procedure is repeated for a series of parallel
planes, for instance planes parallel to the xy plane, the volume
of the workspace in the xyz space can be obtained by using
any appropriate quadrature rule to numerically integrate the
area of the “‘slices” of the workspace obtained above.

5 Example

As an example of application of the algorithm described
above, the workspace of the parallel manipulator developed
at INRIA will now be studied. The INRIA prototype, which
is a six-degree-of-freedom fully parallel manipulator, was de-
scribed in detail in (Merlet, 1987, 1988). Its geometric prop-
erties are summarized in Table 1. Equations (15) and (16) were
used here to obtain a geometric description of some sections
of the workspace parallel to the xy plane for a reference ori-
entation of the platform, i.e., when Q = 1, where 1 is the
identity matrix.
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[

Area=55168 mm?

Fig. 6 Boundary of the workspace for z = 5§12 mm

S~

(a)z = 495. mm, A=T7143. mm? (b)z = 500. mm, A=16888. mm?

&

(¢)z = 510. mm, A=43948. mm? (d)z = 512. mm, A=55168. mm?

(€)z = 514.5 mm, A=74949. mm? | | (f)z = 530. mm, A=46390. mm?

Fig.7 Boundary of the workspace for different values of z, i.e., sections
of the workspace in planes parallel to the xy plane

For instance, when z is equal to 512 mm, the circles described
by equation (15) and (16) are as shown in Fig. 4. Next, using
the algorithm of section 4, we divide the circles in a series of
circular arcs by computation of the intersection points of the
circles. This is schematically represented in Fig. 5. Then by
elimination of the irrelevant arcs, we obtain the boundary of
the workspace, which is shown in Fig. 6. The zones where the

Journal of Mechanical Design

Fig. 8 Spatial representation of the workspace of the INRIA parallel
manipulator for the reference orientation of the platform

el Ny

400. _1_ 400.
(a)y = —50. mm, A=8892. mm? (b)y = 0. mm, A=9807. mm?

%%

~1_ 400. 400.
(c)y = 100. mm, A=5934. mm? (d)y = 150. mm, A=2134. mm?

Fig. 9 Sections of the workspace in planes parallel to the xz plane

6 annular regions intersect have then been found. Also, the
contribution of each of the arcs to the area of the section of
the workspace has been computed and added up to lead the
total area.

A similar procedure is followed for several values of z. A
few sections are illustrated in Fig. 7 where the areas are also
indicated. Using the different sections, a representation of the
volume of the workspace in the xyz space for the reference
orientation of the platform is obtained as shown in Fig. 8. In
that figure, the sections in planes parallel to the xy plane have
been used together with sections in a series of vertical planes
intersecting the z axis in order to obtain a better representation.
The global shape of the workspace is that of an umbrella.
Moreover, the sections in planes parallel to the xy plane de-
scribed above clearly indicate that, for a given value of z, there
may exist some regions of the plane within the external bound-
ary of the workspace that cannot be reached. For the reference

SEPTEMBER 1990, Vol. 112/ 335



orientation, the volume of the workspace of the INRIA pro-
rotype is equal to approximately 2.2 x 105 mm?,

Using equations (19) and (20), sections of the workspace on
planes parallel to the xz plane have been obtained. A few of
them are shown in Fig. 9 with the corresponding values for
the areas.

6 Conclusion

An algorithm for the determination of three-dimensional
sections of the workspace of parallel manipulators has been
presented in this paper. The algorithm is based on the geometric
description of the boundaries of the workspace, which was
shown to be obtained from the intersection of 6 regions, each
of which being the difference between two concentric spheres.
The problem was then reduced to a two-dimensional one by
considering planar sections of the workspace. The boundary
of the workspace was therefore represented as a set of circular
arcs on these sections and a method of integration on the
boundary was used to determine the volume of the workspace.
An example of application to the INRIA prototype was pre-
sented which led to an accurate representation of the work-
space. Moreover, the evaluation of the volume of the reachable
portion of the space can be performed at a reasonable cost
which is an important issue in the context of design and op-
timization.
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