Title of your Project A Template for the Master Presentation

Full name of you and your Supervisor and Co-supervisor

University of Tehran

Human and Robot Interaction Laboratory (TaarLab)

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocitiesNormalized Jacobian
- Maximum Kinematic Sensitivity
 - I Point-displacement KS σ_{I}
 - 2 Rotation KS σ_{r_c}
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocitiesNormalized Jacobian
- Maximum Kinematic Sensitivity
 - Point-displacement KS
 - 2 Rotation KS σ_{r_c}
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

• Indices for Dimensionally Homogeneous Jacobian

- Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocitiesNormalized Jacobian
- Maximum Kinematic Sensitivity
 - Point-displacement KS
 - 2 Rotation KS σ_{r_c} .
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)
 - O Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocities
 Normalized Jacobian
- Maximum Kinematic Sensitivity
 - I Point-displacement KS σ_{μ}
 - 2 Rotation KS $\sigma_{r_{c,i}}$
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Oexterity (Condition number)
 - O Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocitiesNormalized Jacobian
- Maximum Kinematic Sensitivity
 - I Point-displacement KS σ
 - 2 Rotation KS σ_{r_c}
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocitiesNormalized Jacobian
- Maximum Kinematic Sensitivity (KS)
 - Point-displacement KS $\sigma_{p_{c\,f}}$
 - **2** Rotation KS $\sigma_{r_{c,f}}$

• Jacobian representation

$$\sigma_{\mathbf{p}_{c,f}} \equiv \max_{\|\mathbf{\rho}\|_c=1} \| \mathbf{p} \|_f$$

$$\sigma_{\mathbf{r}_{c,f}} \equiv \max_{\|\boldsymbol{\rho}\|_{c}=1} \| \boldsymbol{\phi} \|_{f}$$

$$\|\rho\|_2 = \sqrt{\rho_1^2 + \dots \rho_n^2}$$
$$\|\rho\|_{\infty} = \max\{\rho_1, \dots, \rho_n\}$$

Taarl ah

Thanks to Ehsan Eaghih for the animation

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocities
 Normalized Jacobian
- Maximum Kinematic Sensitivity (KS)
 - Point-displacement KS $\sigma_{p_{c\,f}}$
 - () Rotation KS $\sigma_{r_{c,f}}$

• Jacobian representation

 $\sigma_{\mathbf{r}_{c,f}} \equiv \max_{\|\boldsymbol{\rho}\|_{c}=1} \|\boldsymbol{\phi}\|_{f}$ $\sigma_{\mathbf{p}_{c,f}} \equiv \max_{\|\mathbf{p}\|_{c}=1} \|\mathbf{p}\|_{f}$

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocities
 - Ormalized Jacobian
- Maximum Kinematic Sensitivity (KS)
 - Operation of the second se
 - **2** Rotation KS $\sigma_{r_{c,f}}$
- Jacobian representation

The subscript of Electric Equilibrium the subscription

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocities
 Normalized Jacobian
- Maximum Kinematic Sensitivity (KS)
 - Point-displacement KS $\sigma_{p_{c\,f}}$
 - (2) Rotation KS $\sigma_{r_{c,f}}$

• Jacobian representation

Taarl al

Thanks to Ehsan Eaghih for the animations

Full name of you and your Supervisor, Co-supervisor and ...

Kinematics of Parallel Mechanaisms

Introduction

- Indices for Dimensionally Homogeneous Jacobian
 - Dexterity (Condition number)Manipulability
- Indices for Dimensionally Nonhomogeneous Jacobian
 - Multiple EE point velocities
 - Normalized Jacobian
- Maximum Kinematic Sensitivity (KS)
 - Point-displacement KS $\sigma_{p_{c\,f}}$
 - (a) Rotation KS $\sigma_{\mathbf{r}_{c,f}}$
- Jacobian representation

Full name of you and your Supervisor, Co-supervisor and ...

Taarl a

KS for $c = \infty$ and $f = \{2, \infty\}$ • $\|\rho\|_{\infty} < 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} < 1 \equiv \text{zonotope in } \mathbb{R}^6$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ • KS is a local index, K is known All the vertices • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\boldsymbol{\rho}\|_{\infty} < 1$ $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} < 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ • KS is a local index, K is known All the vertices • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$ TaarLab

Full name of you and your Supervisor, Co-supervisor and

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ • KS is a local index, K is known All the vertices • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$ TaarLab

Full name of you and your Supervisor, Co-supervisor and ...

TaarLab

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} < 1 \equiv \text{zonotope in } \mathbb{R}^6$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ KS is a local index, K is known All the vertices • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{n} |x_i|, \max_{i=1}^{n} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and ...

Full name of you and your Supervisor, Co-supervisor and

Full name of you and your Supervisor, Co-supervisor and ...

Full name of you and your Supervisor, Co-supervisor and ...

TaarLa

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} < 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by V $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ 2 • KS is a local index, K is known All the vertices $\phi 0$ • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and ...

TaarLal

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ 2 • KS is a local index, K is known All the vertices $\phi 0$ • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and

TaarLal

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} \leq 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ 2 • KS is a local index, K is known All the vertices $\phi 0$ • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and

TaarLal

KS for $c = \infty$ and $f = \{2, \infty\}$ General Formulation \longrightarrow 3-RPR • $\|\rho\|_{\infty} < 1$ • $\|\mathbf{K}\mathbf{x}\|_{\infty} < 1 \equiv \text{zonotope in } \mathbb{R}^{6}$ • Vertices can be found by $[\mathbf{K}^T - \mathbf{K}^T] \Delta \mathbf{x} \prec \mathbf{1}_{12}$ 2 • KS is a local index, K is known All the vertices $\phi 0$ • $\sigma_{p_{\infty,\infty}} =$ $\max(\max_{i=1}^{4} |x_i|, \max_{i=1}^{4} |y_i|)$ • $\sigma_{p_{\infty,2}} = \sqrt{\max_{i=1,\dots,4} (x_i^2 + y_i^2)}$ • $\sigma_{r_{\infty,\infty}} = \sigma_{r_{\infty,2}} = \max_{i=1}^{n} |\phi_i|$

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- 𝔅 $σ_{p2,∞}$ and $σ_{r2,∞} ≡$ an interval
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \| \textbf{K} \textbf{x} \|_2 \leq 1 \equiv \text{ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- 𝔅 $σ_{p2,∞}$ and $σ_{r2,∞} ≡$ an interval
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \| \textbf{K} \textbf{x} \|_2 \leq 1 \equiv \text{ellipsoid in } \mathbb{R}^6$
- e For point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- 𝔅 $σ_{p2,∞}$ and $σ_{r2,∞} ≡$ an interval
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- 𝔅 $σ_{p2,∞}$ and $σ_{r2,∞} ≡$ an interval
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- $\sigma_{p2,\infty}$ and $\sigma_{r2,\infty} \equiv$ an interval • A 3-RPR

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- $\ \, {\mathfrak o} \ \, \sigma_{{\it P2},\infty} \ \, {\rm and} \ \, \sigma_{{\it r2},\infty} \equiv {\rm an \ interval} \ \ \,$
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- $\ \, {\mathfrak o} \ \, \sigma_{{\it P2},\infty} \ \, {\rm and} \ \, \sigma_{{\it r2},\infty} \equiv {\rm an \ interval} \ \ \,$
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and

KS for c = 2 and $f = \{2, \infty\}$

General Formulation \longrightarrow 3-RPR

- $\textcircled{\ } \|\mathbf{K}\mathbf{x}\|_2 \leq 1 \equiv \text{ellipsoid in } \mathbb{R}^6$
- Por point-displacement KS
- For rotation KS
- $\sigma_{p2,2}$ and $\sigma_{r2,2} \equiv$ semimajor
- 𝔅 $σ_{p2,∞}$ and $σ_{r2,∞} ≡$ an interval
- A 3-R<u>P</u>R

Full name of you and your Supervisor, Co-supervisor and ...

Taarl al

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ and $\sigma_{2,2}$
- $\sigma_{\infty,2}$ Merlet
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ and $\sigma_{2,2}$
- $\sigma_{\infty,2}$ Merlet
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- $\ \, \bullet \ \, \sigma_{\infty,\infty} \gtrless \sigma_{2,2}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ and $\sigma_{2,2}$
- $\sigma_{\infty,2}$ Merlet
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ Merlet
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- $\ \, \bullet \ \, \sigma_{\infty,\infty} \gtrless \sigma_{2,2}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ and $\sigma_{2,2}$
- $\sigma_{\infty,2}$ Merlet
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- $\ \, \bullet \ \, \sigma_{\infty,\infty} \gtrless \sigma_{2,2}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ and $\sigma_{2,2}$
- $\sigma_{\infty,2}$ Merlet 🖒
- Which one should be considered ! ⇒
 Redundant PMS

Full name of you and your Supervisor, Co-supervisor and

Comparison Between Different Variants of the KS

Some observations

- $\ \, \bullet \ \, \sigma_{\infty,2} \geq \sigma_{\infty,\infty} \geq \sigma_{2,\infty}$
- $\circ \sigma_{\infty,2} \geq \sigma_{2,2} \geq \sigma_{2,\infty}$
- KS is frame-invariant
- Apply a rotation
- $\sigma_{\infty,2}$ Merlet
- O Which one should be considered ! ⇒ Redundant PMs

Full name of you and your Supervisor, Co-supervisor and ...

KS of Redundant PMs

Full name of you and your Supervisor, Co-supervisor and ...

KS of Redundant PMs

Full name of you and your Supervisor, Co-supervisor and ...

KS of Redundant PMs Some conclusions 0.8 0.6 0.40.2 y 0 -0.2-0.4-0.6 $A_1 \equiv O_1$ A_2 -0.8-0.50.5 \hat{r} Non-redundant 2-DOF

Full name of you and your Supervisor, Co-supervisor and ...

KS of Redundant PMs Some conclusions 0.8 0.6 0.40.2 y = 0-0.2-0.4-0.6 $A_1 \equiv O_1$ A_2 -0.8-0.50.5 $\frac{0}{r}$ Redundant 3-DOF

Full name of you and your Supervisor, Co-supervisor and

KS of Redundant PMs Some conclusions 2 1.52-norm would definitely 0.5decrease the KS > 0-0.5 \odot ∞-norm ! -1 Consistent with Merlet in the second seco -1.5-2 -2 -1 0 1 9

Full name of you and your Supervisor, Co-supervisor and

KS of Redundant PMs Some conclusions 2 1.52-norm would definitely 0.5decrease the KS > 0-0.5 \odot ∞-norm ! -1 Consistent with Merlet in the second seco -1.5-2 -2 -1 0 1 9

Full name of you and your Supervisor, Co-supervisor and ...

Global Kinematic Sensitivity

From Local to Global KS

$$\bigcirc \quad \zeta_I = \frac{\int_W I dW}{\int_W dW}$$

Ont working in singularity !

Indices for optimization :

$$\sigma'_{r,2} = \frac{1}{1 + \sigma_{r,2}}$$

$$\sigma'_{p,2} = \frac{1}{1 + \sigma_{p,2}}$$

$$0 \le \sigma'_{r,2} \le 1, \quad 0 \le \sigma'_{p,2} \le 1$$

Global Kinematic Sensitivity

Full name of you and your Supervisor, Co-supervisor and

Global Kinematic Sensitivity

From Local to Global KS

Ont working in singularity !

Indices for optimization :

$$\sigma'_{r,2} = \frac{1}{1 + \sigma_{r,2}}$$
$$\sigma'_{p,2} = \frac{1}{1 + \sigma_{p,2}}$$
$$0 \le \sigma'_{r,2} \le 1, \quad 0 \le \sigma'_{p,2} \le 1$$
$$\mathbf{Global Kinematic Sensitivity}$$

Full name of you and your Supervisor, Co-supervisor and

Conclusion

Summary for Kinematic Sensitivity

- From some generalities to a case study : 3-RPR
- Analysing different norms for the constraint and function
- End up with $\sigma_{\infty,2}$

- Global Kinematic Sensitivity
 - **O**ptimization

Full name of you and your Supervisor, Co-supervisor and

Conclusion Summary for Kinematic Sensitivity

- From some generalities to a case study : 3-RPR
- Analysing different norms for the constraint and function
- End up with $\sigma_{\infty,2}$

- Global Kinematic Sensitivity
- Optimization

Full name of you and your Supervisor, Co-supervisor and

Conclusion

Summary for Kinematic Sensitivity

- From some generalities to a case study : 3-R<u>P</u>R
- Analysing different norms for the constraint and function
- End up with $\sigma_{\infty,2}$

- Global Kinematic Sensitivity
- Optimization

Full name of you and your Supervisor, Co-supervisor and

Conclusion

Summary for Kinematic Sensitivity

- From some generalities to a case study : 3-RPR
- Analysing different norms for the constraint and function
- End up with $\sigma_{\infty,2}$

- Global Kinematic Sensitivity
- Optimization

Full name of you and your Supervisor, Co-supervisor and

Conclusion

Summary for Kinematic Sensitivity

- From some generalities to a case study : 3-RPR
- Analysing different norms for the constraint and function
- Solution End up with $\sigma_{\infty,2}$

- Global Kinematic Sensitivity
- Optimization

Full name of you and your Supervisor, Co-supervisor and ...

Acknowledgments Thanks to Natural Sciences and Engineering Research Council of Canada (NSERC) 2 Canada Research Chair program Iran National Science Foundation (INSF) research grant. Ehsan Faghih for the animations

Ilian Bonev (For 3-RPR models)

Spiritual Sponsors

Taarl al

Full name of you and your Supervisor, Co-supervisor and ...

Acknowledgments

Thanks to

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- 2 Canada Research Chair program
- Iran National Science Foundation (INSF) research grant.
- Ehsan Faghih for the animations
- Ilian Bonev (For 3-RPR models)

Taarl al