Static and Strength of Materials

Mehdi Tale Masouleh

October 17, 2013

Overview

Our objective

- References
- Homework \& Projects
- Exam
- How to reach me:

Overview

Our objective

- References
- Homework \& Projects
- Exam
- How to reach me:

Overview

Our objective

- References
- Homework \& Projects
- Exam
- How to reach me:

Overview

Our objective

References

- Homework \& Projects

Exam
How to reach me:
(1) Returning some problems per chapter
(2) A GUI for analyzing 2D truss
(3) A project based on Solid Works
(Static balancing of Four-bar mechanisms

Overview

Our objective

- References

- Homework \& Projects
- Exam
(1) One quiz per chapter
(2) One final Exam

- How to reach me:

Overview

Our objective

References
Homework \& Projects
Exam

- How to reach me:
- Scribble me at : m.t.masouleh@ut.ac.ir mehdi.tale.masouleh@gmail.com
- My office: A217 and B217
- My office phone number: 61118574
- Human and Robot Interaction Lab.

Overview

Our objective

- References

- Homework \& Projects
- Exam
- How to reach me:
- TA

Overview

Our objective

```
- References
- Homework & Projects
- Exam
- How to reach me:
- TA
```


Mostafa Saket

Overview

Our objective

```
- References
- Homework & Projects
- Exam
- How to reach me:
- TA
```


Mahmood Ghafouri

Overview

Our objective

- References

- Homework \& Projects
- Exam
- How to reach me:
- TA

Overview

Our objective

- References

- Homework \& Projects
- Exam
- How to reach me:
- TA

Overview

Our objective

```
- References
- Homework & Projects
- Exam
- How to reach me:
- TA
```


Introduction

- What is Mechanincs!?
- First in this filed:

Introduction

- What is Mechanincs!?

Introduction

- What is Mechanincs!?
- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

TaarLab

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci

Introduction

- What is Mechanincs!?

- First in this filed:
- Archimedes of Syracuse
- Simon Stevin
- Galileo Galilei
- Isaac Newton
- Leonardo da Vinci
- :

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space

- Time

In Dynamics

- Mass
- Force $\sqrt{ }$
- A particle $\sqrt{ }$
- Rigid body $\sqrt{ }$

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time
- Mass $\sqrt{ }$
- Force $\sqrt{ }$
- A particle $\sqrt{ }$
- Rigid body
- The geometric region occupied by bodies.
- Determined relative to some geometric reference system
- Primary inertial system or astronomical frame of reference.
- no translation and no rotation
- Newtonian laws \longrightarrow the velocity involved in the system is less than the spe of light $\approx 300000 \mathrm{Km} / \mathrm{s}$

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time
- Mass
- Force $\sqrt{ }$
- A particle $\sqrt{ }$
- Rigid body

In Dynamics

- The geometric region occupied by bodies.
- Determined relative to some geometric reference system
- Primary inertial system or astronomical frame of reference.
- no translation and no rotation
- Newtonian laws \longrightarrow the velocity involved in the system is less than the spe of light $\approx 300000 \mathrm{Km} / \mathrm{s}$

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Quantities of the succession of event.
- Absolute quantity in Newtonian mechanics
- Space
- Time \times In Dynamics \checkmark
- Mass $\sqrt{ }$
- Force \checkmark
- A particle r
- Rigid body \checkmark

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time \times

In Dynamics \checkmark

- Mass $\sqrt{ }$
- Force
- A particle
- Rigid body

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Quantitative measure of the inertia or resistance to change in motion of a body.
- Quantity of matter in a body
- The property which gives rise to the gravitational attraction.

"Einstein proposed that
Huma

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time
- Mass
- Force \checkmark
- A particle \checkmark
- Rigid body
- The vector (!) action of one body on another
- Tends to displace a body based on its direction and line of action.
- Magnitude, direction and point of application

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- A body with negligible dimensions
- Space
- Time x In Dynamics $\sqrt{ }$
- Mass $\sqrt{ }$
- Force \checkmark
- A particle \checkmark
- Rigid body

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time
- Mass
- Force $\sqrt{ }$
- A particle $\sqrt{ }$
- Rigid body
- A body with negligible dimensions

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- a body whose changes in shape are negligible compared with the
- Space
- Time
- Mass
- Force \checkmark
- A particle ,
- Rigid body \checkmark
(1) overall dimensions of the body
(O) with the changes in the position of the body.

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- a body whose changes in shape are negligible compared with the
- Space
- Time

In Dynamics
© overall dimensions of the body
(2) with the changes in the position of the body.

Vector and Scalar

A review

- Mechanics is governed by
two quantities:
(Scalar: a magnitude
Vector: a
magnitude+direction

```
Controversial
Everything with direction and
magnitude can be considered as
vector! The parallelogram rule
should be applicable.
```


Vector and Scalar

A review

- Mechanics is governed by two quantities:
(1) Scalar: a magnitude
(3) Vector: a magnitude+direction!

Everything with direction and magnitude can be considered as vector! The parallelogram rule should be applicable.

- Both are Tensors!
- Zero-order tensor: Scalar
- first-order tensor: Vector
- Coming from Tensor Product

[^0]
Vector and Scalar

Controversial

Everything with direction and magnitude can be considered as
 vector! The parallelogram rule should be applicable.

Vector and Scalar

Controversial

Everything with direction and magnitude can be considered as
 vector! The parallelogram rule should be applicable.

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative lawAssociative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition
(C) Parallelogram addition
(3) Commutative law
(4) Associative law
- Subtraction
\mathbf{v}_{1}
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition
() Parallelogram addition
- Commutative law
- Associative law
a Subtraction

- Scalar multiplication
- Unit vectors: \mathbf{i}, \mathbf{j} and \mathbf{k}
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(2) Parallelogram addition
- Commutative law
(7) Associative law

Subtraction

- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition
() Parallelogram addition
(3) Commutative law
(Associative law
- Subtraction

- Scalar multinlication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition

C Parallelogram addition

- Commutative law
(1) Associative law
- Subtraction

- Scalar multiplication
- Unit vectors: i. \mathbf{j} and \mathbf{k}
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition
(C) Parallelogram addition
© Commutative law
Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: \mathbf{i}, \mathbf{j} and \mathbf{k}
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
(1) Triangle addition
(C) Parallelogram addition
- Commutative law
- Associative law
- Subtraction

- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
(C) Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multinlication
- Unit vectors: \mathbf{i}, \mathbf{j} and \mathbf{k}

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multinlication
- Unit vectors: i, j and k

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multinlication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
(Associative law
- Subtraction
- Scalar multinlication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law
- Subtraction
$\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$
- Scalar multinlication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law

- Subtraction
- Scalar multiplication

$$
I=\cos \theta_{x}, m=\cos \theta_{y}, n=\cos \theta
$$

- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
© Triangle addition
C Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multinlication
- Unit vectors: i, j and k
- Direction cosines

Vector Operations

Review-Dot or Scalar Product

- A first-order scalar tensor product
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=v_{1} v_{2} \cos \theta$
- $\cos \theta=\frac{\mathbf{v}_{1} \cdot \mathbf{v}_{2}}{v_{1} v_{2}}$
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ then $\mathbf{v}_{1} \perp \mathbf{v}_{2}$

Vector Operations

Review-Dot or Scalar Product

- A first-order scalar tensor product
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=v_{1} v_{2} \cos \theta$
- $\cos \theta=\frac{\mathbf{V}_{1} \cdot \mathbf{V}_{2}}{\mathbf{V}_{1} \mathrm{~V}_{2}}$
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ then $\mathbf{v}_{1} \perp \mathbf{v}_{2}$

Vector Operations

Review-Dot or Scalar Product

- A first-order scalar tensor product
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathrm{v}_{1} \mathrm{v}_{2} \cos \theta$
- $\cos \theta=\frac{\mathbf{v}_{1} \cdot \mathbf{v}_{2}}{v_{1} v_{2}}$
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ then $\mathbf{v}_{1} \perp \mathbf{v}_{2}$

Vector Operations

Review-Dot or Scalar Product

- A first-order scalar tensor product
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{v}_{1} v_{2} \cos \theta$
- $\cos \theta=\frac{\mathbf{v}_{1} \cdot \mathbf{v}_{2}}{v_{1} v_{2}}$
- $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ then $\mathbf{v}_{1} \perp \mathbf{v}_{2}$

Vector Operations

Review- Cross or Vector Product

- $\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|=v_{1} v_{2} \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

Vector Operations

Review- Cross or Vector Product

- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

Vector Operations

Review- Cross or Vector Product

- $\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|=v_{1} v_{2} \sin \theta$
- Triple scalar product
- Triple vector product Some useful relations in kinematics and Statics

$$
\begin{gathered}
\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)= \\
\left(\mathbf{v}_{1} \cdot \mathbf{v}_{3}\right) \mathbf{v}_{2}-\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{3}
\end{gathered}
$$

Vector Operations

Review- Cross or Vector Product

- $\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|=v_{1} v_{2} \sin \theta$
- Triple scalar product

$$
|\mathbf{a} \times \mathbf{b}|=\sqrt{(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})-(\mathbf{a} \cdot \mathbf{b})^{2}}
$$

- Some useful relations in kinematics and Statics

Vector Operations

Review- Cross or Vector Product

$$
(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a b d}) \mathbf{c}-(\mathbf{a b c}) \mathbf{d}
$$

- Some useful relations in kinematics and Statics

Vector Operations

Review- Cross or Vector Product

- $\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|=v_{1} v_{2} \sin \theta$
- Triple scalar product

$$
\begin{gathered}
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})= \\
(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
\end{gathered}
$$

- Some useful relations in kinematics and Statics

Application of Triple Vector Product

Nothing is useless!

- The Cartesian decomposition of \mathbf{A}

$$
\mathbf{A}_{S}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right), \quad \mathbf{A}_{S S}=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{T}\right)
$$

- The vector of \mathbf{A} is:

$$
\mathbf{a} \times \mathbf{v}=\mathbf{A}_{S S} \mathbf{v}
$$

- The trace of \mathbf{a} is the sums of the eigenvalues of \mathbf{A}_{s}, are all real.
- We define the following:

$$
\operatorname{vect}(\mathbf{A})=\mathbf{a}=\frac{1}{2}\left[\begin{array}{l}
a_{32}-a_{23} \\
a_{13}-a_{31} \\
a_{21}-a_{12}
\end{array}\right] \quad \operatorname{tr}(\mathbf{A})=a_{11}+a_{22}+a_{33}
$$

Application of Triple Vector Product

Nothing is useless

- Show that

$$
\operatorname{vect}\left(\mathbf{a b}^{T}\right)=-\frac{1}{2} \mathbf{a} \times \mathbf{b}, \quad \operatorname{tr}\left(\mathbf{a}^{T} \mathbf{b}\right)=\mathbf{a}^{T} \mathbf{b}
$$

-

Newton's Laws of Motion

From your secondary

- First law ($\sum \mathbf{F}=\mathbf{0}$)
- Second law (Dynamic $\mathbf{F}=m \mathbf{a}$)
- Third law (Action \& Re-action)

Units

International System of metric units (SI)

Quantity	Dimensional Symbol	Unit	Symbol
Mass	M	Kilogram	Kg
Length	L	meter	m
Time	T	second	s
Force	F	newton	N

Units

International System of metric units (SI)

Quantity	Dimensional Symbol	Unit	Symbol
Mass	M	Kilogram	Kg
Length	L	meter	m
Time	T	second	s
Force	F	newton	N

Units

International System of metric units (SI)

Quantity	Dimensional Symbol	Unit	Symbol
Mass	M	Kilogram	Kg
Length	L	meter	m
Time	T	second	s
Force	F	newton	N

- Bureau International des Poids et Mesure
- an alloy of 90% platinum-10
\% iridium

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=$ ma
- A force is vector quantity! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
(2) Free vector: Movement without rotation
(2) sliding vector: Unique line of action but no unique point of application.
(3) Fixed vector. A fore on a non-rigid body.

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=m \mathbf{m}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tensio
(Free vector: Movement without rotation
(3) sliding vector: Unique line of action but not unique point of application.
(3) Fixed vector. A fore on a non-rigid body.

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=$ ma
- A force is vector quantity! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension. (1) Free vector: Movement without rotation
(C) sliding vector: Unique line of action but not unique point of application.
3 Fixed vector. A fore on a non-rigid body.

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=$ ma
- A force is vector quantity! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension. (2) Free vector: Movement without rotation (2) sliding vector: Unique line of action but no unique point of application. (3) Fixed vector. A fore on a non-rigid body.

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=$ ma
- A force is vector quantity! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
(1) Free vector: Movement without rotation
(2) sliding vector: Unique line of action but not unique point of application.
(3) Fixed vector. A fore on a non-rigid body.

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F}=m a$
- A force is vector quantity! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
(1) Free vector: Movement without rotation
(2) sliding vector: Unique line of action but not unique point of application.
(3) Fixed vector. A fore on a non-rigid body.
- Action of a force as External and Internal: The relation of external and internal is the subject of Strength of Materials

Force Systems-Section A: 2D Force System

Force and Principal of Transmissibility

- This channel us to regard Force as sliding vector
- Since we study the resultant of external forces
- Thus, we consider only the magnitude, direction and line of action (besides the point of action)

Force Systems-Section A: 2D Force System

Force Classification

- Contact force: Physical contact
- Body force: position of a body within a force field: gravitational, electric: Your weight

Other classifications:

- Concentrated force

Distributed Load
Concentrated

The above classifications depends on the body under study.

Force Systems-Section A: 2D Force System

2D Force System

- We are not wasting our time for this part.
- Parallelogram law for
concurrent at a point
- A special case: Two paràllel forces
- Rectangular Components

WIIY WISTIE
 ALL MY PRECIOUS TIME

Force Systems-Section A: 2D Force System

2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangilar Components

Force Systems-Section A: 2D Force System

2D Force System

- We are not wasting our time for this part.
- Parallelogram law for
concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

Force Systems-Section A: 2D Force System

2D Force System

- We are not wasting our time for this part.
- Parallelogram law for
concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

Force Systems-Section A: 2D Force System

2D Force System

- We are not wasting our time for this part.
- Parallelogram law for
concurrent at a point
- A snecial case: Two narallel forces
- Rectangular Components

Force Systems-Section A: 2D Force System

Guy Cables

Force Systems-Section A: 2D Force System

Guy Cables

$\alpha=\tan ^{-1} \frac{50}{40} \beta=\tan ^{-1} \frac{40}{60}$ $\gamma=180-\alpha-\beta=95^{\circ}$ Law of sines \square

Force Systems-Section A: 2D Force System

Guy Cables

$$
\begin{equation*}
\alpha=\tan ^{-1} \frac{50}{40} \tag{40}
\end{equation*}
$$

Force Systems-Section A: 2D Force System

Guy Cables

Force Systems-Section A: 2D Force System

Guy Cables

$$
\begin{gathered}
\alpha=\tan ^{-1} \frac{50}{40} \beta=\tan ^{-1} \frac{40}{60} \\
\gamma=180-\alpha-\beta=95^{\circ}
\end{gathered}
$$

Force Systems-Section A: 2D Force System

Guy Cables

Force Systems-Section A: 2D Force System

Guy Cables

Force Systems-Section A: 2D Force System

Guy Cables

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Force Systems-Section A: 2D Force System

The gusset plate

Strength of Materials

$$
\beta=180-45-65-\quad-\quad \sin 75^{\circ}
$$

Moment

Moment

- Up to now: force as tendance to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: $M=F d$
- The cross product $\mathbf{M}=\mathbf{r} \times \mathbf{F}$.

- Varignon's Theorem, This could be in your exam

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: $M=F d$
- The cross product $\mathbf{M}=\mathbf{r} \times \mathbf{F}$.

- Varignon's Theorem, This could be in your exam

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: $M=F d$
- The cross product $\mathbf{M}=\mathbf{r} \times \mathbf{F}$.

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: $M=f d$.
- The cross product $\mathbf{M}=\mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem, This could be in your exam

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: $M=f d$.
- The cross product $\mathbf{M}=\mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem. This could be in your exam

Couple

Couple

- Moment produced by two equal opposite and non-collinear forces
- The vector form could on your exam
- Force-Couple System

Couple

Couple

- Moment produced by two equal opposite and non-collinear forces
- The vector form could on your exam
- Force-Couple System

Some Hints for the Exam

For instance

- Triple vector product (develop)
- The connection between Statics and Strength of Materials
- Application of law of sine;
- Application of law of cosine;
- Varginon's theorem;
- Derive the vector form of a couple;
- Different forms to represent a vector.

Force-Couple System

Force-Couple System

- Force-Couple System
- Replacement of force by an equivalent force-couple system.
- The reverse is also valid.
- They have any applications in mechanics.
- Of paramount importance in Screw Theory
- Thus it should be mastered.

Example-Moment

Force-Couple System

Example-Moment

Force-Couple System

Example-Moment

Force-Couple System

$$
m_{c}=F(C E)=90(0.15)=13.5
$$

N.m

Example-Moment

Force-Couple System

Example-Moment

Force-Couple System

Resultants-2D

Resultants

- Action of a group of system of forces
- Most mechanical systems deals with system of force
- Reduce to its simple form
- To the end of describing the action
- Definition of resultant: simplest force combination replacing the original force without alerting the external effect.

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \sum \sum\left(f_{f}\right)$
- $r=\sum f_{i}$
- $m_{0}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{0}$

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{x}}{\varepsilon_{x}}=\tan ^{-1} \frac{\sum\left(f_{f}\right)}{\sum\left(f_{x}\right) t}$
- $r=\sum f_{i}$
- $m_{0}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{0}$

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$ - $\theta=\tan ^{-1} \frac{r_{x}}{x_{x}}=\tan ^{-1} \frac{\sum\left(f_{r}\right)}{\sum\left(f_{x}\right) t}$ - $r=\sum f_{i}$ - $m_{0}=\sum m_{i}=\sum\left(f_{i} d\right)$ - $r d=m_{0}$

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \frac{\sum\left(f_{y}\right)_{i}}{\sum\left(f_{x}\right)_{i}}$
- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $m_{O}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{O}$

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \frac{\sum\left(f_{y}\right)_{i}}{\sum\left(f_{x}\right)_{i}}$

- $\mathrm{r}=\sum \mathrm{f}_{i}$
- $m_{O}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{0}$

TaarLab Huma

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \frac{\sum\left(f_{y}\right)_{i}}{\sum\left(f_{x}\right)_{i}}$
- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $m_{O}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{O}$

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \frac{\sum\left(f_{y}\right)_{i}}{\sum\left(f_{x}\right)_{i}}$
- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $m_{0}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{0}$

Resultants-2D

Resultants-Mathematic Formulation

- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $r_{x}=\sum\left(f_{x}\right)_{i}, r_{y}=\sum\left(f_{y}\right)_{i}$
- $r=\sqrt{\left(\sum\left(f_{x}\right)_{i}\right)^{2}+\left(\sum\left(f_{y}\right)_{i}\right)^{2}}$
- $\theta=\tan ^{-1} \frac{r_{y}}{r_{x}}=\tan ^{-1} \frac{\sum\left(f_{y}\right)_{i}}{\sum\left(f_{x}\right)_{i}}$
- $\mathbf{r}=\sum \mathbf{f}_{i}$
- $m_{0}=\sum m_{i}=\sum\left(f_{i} d\right)$
- $r d=m_{O}$

3D Forces Systems

Rectangular Components

- $f_{x}=f \cos \theta_{x}$
$f_{y}=f \cos \theta_{y}$
$f_{z}=f \cos \theta_{z}$
- $f=\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}$
$\mathbf{f}=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}$
$\mathbf{f}=f\left(\mathbf{i} \cos \theta_{x}+\mathbf{j} \cos \theta_{y}+\mathbf{k} \cos \theta_{z}\right)$
- $\mathbf{n}_{F}=\mathbf{i}+m \mathbf{j}+n \mathbf{k}$
$\mathbf{f}=F \mathbf{n}_{F}$

3D Forces Systems-Rectangular Components

Two points on the line of action of the force

3D Forces Systems-Rectangular Components

Specification by Two Angles

- $f_{x y}=f \cos \phi$
- $f_{z}=f \sin \phi$
- $f_{x}=f_{x y} \cos \theta=f \cos \phi \cos \theta$
- $f_{y}=f_{x y} \sin \theta=f \cos \phi \sin \theta$
- Dot product Review
- Angle between two vectors

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Dighthand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary . axis

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary

I

B

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

3D Moment and Couples

Moments in 3D

- $\mathbf{m}_{O}=\mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

$$
\begin{aligned}
\mathbf{m}_{\lambda} & =((\mathbf{r} \times \mathbf{f}) \cdot \mathbf{n}) \mathbf{n} \\
\mathbf{m}_{O} & =\left|\begin{array}{ccc}
r_{x} & r_{y} & r_{z} \\
f_{x} & f_{y} & f_{z} \\
\alpha & \beta & \gamma
\end{array}\right|
\end{aligned}
$$

where α, β and γ stand for tho
direction cosine of the unite vector \mathbf{n}

3D Moment and Couples

Couples in 3D

- Extended easily from the 2 D
- $\mathbf{m}=\mathbf{r}_{A} \times \mathbf{f}+\mathbf{r}_{b} \times(-\mathbf{F})$
- Then,
$\mathbf{m}=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{f}=\mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple
system

3D Moment and Couples

Couples in 3D

- Extended easily from the 2 D
- $\mathbf{m}=\mathbf{r}_{A} \times \mathbf{f}+\mathbf{r}_{b} \times(-\mathbf{F})$
- Then,
$\mathbf{m}=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{f}=\mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple
system

3D Moment and Couples

Couples in 3D

- Extended easily from the 2 D
- $\mathbf{m}=\mathbf{r}_{A} \times \mathbf{f}+\mathbf{r}_{b} \times(-\mathbf{F})$
- Then,
$\mathbf{m}=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{f}=\mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple
system

3D Moment and Couples

Couples in 3D

- Extended easily from the 2D
- $\mathbf{m}=\mathbf{r}_{A} \times \mathbf{f}+\mathbf{r}_{b} \times(-\mathbf{F})$
- Then,

- A very good example
- Equivalent force-couple system

3D Moment and Couples

Couples in 3D

- Extended easily from the 2D
- $\mathbf{m}=\mathbf{r}_{A} \times \mathbf{f}+\mathbf{r}_{b} \times(-\mathbf{F})$
- Then,
$\mathbf{m}=\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times \mathbf{f}=\mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple system

Resultants in 3D

The State of the Art

- The concept remains the same, Review Eqs. (2/20) and (2/21)
- Three special cases: (Important for exam)
(1) Concurrent forces:

Only Eq. (2/20)
(2) Parallel forces:

$$
\begin{aligned}
& \mathbf{r}=\sum \mathbf{f}_{i} \\
& \mathbf{m}=\sum \mathbf{m}_{i} \\
& r= \\
& \sqrt{\left(\sum f_{x}\right)^{2}+\left(\sum f_{y}\right)^{2}+\left(\sum f_{z}\right)^{2}} \\
& m=\sqrt{\left(m_{x}\right)^{2}+\left(m_{y}\right)^{2}+\left(m_{z}\right)^{2}}
\end{aligned}
$$

Sample Problem 2/14
(3) Coplanar forces: Article 2/6.

Wrench Resultants

Basic Concepts

- When the resultant couple vector is parallel to the resultant force
- Every force and couple system can be reduced to a wrench
- There is a duality between kinematics and statics.
- This duality is governed by Wrench (Statics) and Twist (Kinematics)

Some Hints for the Exam

Concepts

- Concept of force-couple system, 3D and 2D.
- Concept of resultant, 3D and 2D
- Concept of rectangular components

Undergradese

What undergrads ask vs. What they're REALLY asking

- Two methods to represent forces
- Concept of a representing a moment along an axis.
open book exam?
Translation: I don't have to actually memorize anything, do I?*

Can iget an extension? ${ }^{\circ}$
Translation: "Can you re-arrange your life around mine? "
"Is grading going to be curved?' Translation: "Can I do mediocre job and still get an A ?" 2/14)

- Twist and wrench concept
- Duality of statics and kinematics

```
"Hmm, what do
you mean by that?"
Translation: "What's the answer so we can all go home."
```

"Are you going to have office hours today?
Translation: "Can I Translation: Can in your office?

- Three special case for 3D resulteḍ nt (More concerns on Sample problerd

WW. PHDCOMICS.COM

Some Hints for the Exam

Prepare yourself for Section A, 2D

- 2D Force systems Rectangular Components:
2/13, 2/16 and 2/23
- 2D Force systems Moments: 2/33, 2/37, 2/35 and 2/42

I will remember your exam day

- 2D Force systems Couple: 2/60, 2/65 and 2/68
- 2D Force systems, Resultants: 2/76, 2/77, 2/84 and 2/86

Some Hints for the Exam

Prepare yourself for Section B, 3D

- 3D Force systems Rectangular Components: 2/99, 2/105 and 2/107
- 3D Force systems Moments and Couples:
2/117, 2/130 and 2/151
- 3D Force systems, Resultants:
2/135, 2/144, 2/145 and 2/147
- Review for Chapter 2: 2/157, 2/161, 2/162 and 2/164

Matlab Workshop

Matlab by Mr. Molaei, Tuesday, 09/27/2011, 10:30 AM

- Programming
- Functions
- Plot
- To the end of:
(- Get ready for your assignments and projects 2) Filling the gaps that we are not able to fill in this course

Matlab Workshop

Matlab by Mr. Molaei, Tuesday, 09/27/2011, 10:30 AM

- Programming
- Functions
- Plot
- To the end of:
(1) Get ready for your assignments and projects
(2) Filling the gaps that we are not able to fill in this course

Tensor Product

Back

Tensor \& Tensor Prodcut

- A multilinear transformation defined over an underlying finite dimensional vector space, \mathcal{V}.
- Zero-order Tensors: \mathcal{T}^{0} : isomorphic to scalar field. Linear transformation from \mathcal{T}^{0} to \mathcal{T}^{0} :

$$
\begin{equation*}
\alpha[\cdot]: \quad \mathcal{T}^{0} \longmapsto \mathcal{T}^{0} \text { meaning that } \beta \leftrightarrow \alpha[\beta]=\alpha \beta \tag{1}
\end{equation*}
$$

- First-order Tensors, \mathcal{T}^{1} : Isomorphic to the underlying vector space \mathcal{V}. One has:
- $\mathcal{T}^{0} \longmapsto \mathcal{T}^{1}$ meaning that $\mathbf{a}[\alpha]=\alpha \mathbf{a}$
- $\mathcal{T}^{1} \longmapsto \mathcal{T}^{0}$ meaning that $\mathbf{a}[\mathbf{b}]=\mathbf{a} \cdot \mathbf{b}$

[^0]: - Tensor Product

