Static and Strength of Materials

Mehdi Tale Masouleh

October 17, 2013

October 17, 2013

Overview

Our objective

• References

- Homework & Projects
- Exam
- How to reach me
- TA

October 17, 2013

Overview

Our objective

References

- Homework & Projects
- Exam
- How to reach me
- TA

October 17, 2013

Overview

Our objective

References

- Homework & Projects
- Exam
- How to reach me
- TA

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

- Returning some problems per chapter
- A GUI for analyzing 2D truss
- A project based on Solid Works
- Static balancing of Four-bar mechanisms

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

- One quiz per chapter
- One final Exam

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

- Scribble me at : m.t.masouleh@ut.ac.ir mehdi.tale.masouleh@gmail.com
- My office: A217 and B217
- My office phone number: 61118574
- Human and Robot Interaction Lab.

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

October 17, 2013

Overview

Our objective

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

Mostafa Saket

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me:
- TA

October 17, 2013

Overview

- References
- Homework & Projects
- Exam
- How to reach me
- TA

October 17, 2013

October 17, 2013

Introduction

- What is Mechanincs!?
- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galilei
 - Isaac Newton
 - Leonardo da Vinci

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci
 - :

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci
 - :

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci
 - :

October 17, 2013

Introduction

• What is Mechanincs!?

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galilei
 - Isaac Newton
 - Leonardo da Vinci

• :

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevir
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci

October 17, 2013

Introduction

- First in this filed:
 - Archimedes of Syracuse
 - Simon Stevin
 - Galileo Galile
 - Isaac Newton
 - Leonardo da Vinci
 - •

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time ×
 In Dynamics √
- Mass √
- Force ✓
- A particle
- Rigid body 🗸

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

Space

- Time \times In Dynamics \checkmark
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- The geometric region occupied by bodies.
- Determined relative to some geometric reference system
- Primary inertial system or astronomical frame of reference.
- no translation and no rotation
- Newtonian laws \longrightarrow the velocity involved in the system is less than the specific of light $\approx 300\,000$ Km/s Taarlab Huma

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

Space

- Time × In Dynamics √
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- The geometric region occupied by bodies.
- Determined relative to some geometric reference system
- Primary inertial system or astronomical frame of reference.
- no translation and no rotation
- Newtonian laws \longrightarrow the velocity involved in the system is less than the spectrum of light $\approx 300\,000$ Km/s Taarlab Huma

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time × In Dynamics ✓
- Mass 🗸
- Force ✓
- A particle
- I Rigid body √

- Quantities of the succession of event.
- Absolute quantity in Newtonian mechanics

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time × In Dynamics √
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- Quantities of the succession of event.
- Absolute quantity in Newtonian mechanics

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time \times In Dynamics \checkmark
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- Quantitative measure of the inertia or resistance to change in motion of a body.
- Quantity of matter in a body
- The property which gives rise to the gravitational attraction.

"Einstein proposed that

Taarlab Huma

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time \times In Dynamics \checkmark
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- The vector (!) action of one body on another Homework
- Tends to displace a body based on its direction and line of action.
- Magnitude, direction and point of application

Taarlab Huma

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time × In Dynamics •
- Mass 🗸
- Force 🗸
- A particle ✓
- Rigid body 🗸

• A body with negligible dimensions

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time × In Dynamics
 √
- o Mass √
- Force 🗸
- A particle ✓
- o Rigid body √

• A body with negligible dimensions

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- o Time × In Dynamics √
- Mass 🗸
- Force 🗸
- A particle
- Rigid body ✓

- a body whose changes in shape are negligible compared with the
 - overall dimensions of the body
 - with the changes in the position of the body.

October 17, 2013

Fundamental Concept in Mechanics

Five Concepts in Mechanics

- Space
- Time ×
 In Dynamics √
- Mass 🗸
- Force 🗸
- A particle
- Rigid body 🗸

- a body whose changes in shape are negligible compared with the
 - overall dimensions of the body
 - with the changes in the position of the body.

Huma

October 17, 2013

Vector and Scalar

A review

- Mechanics is governed by two quantities:
 - Scalar: a magnitude
 - 2 Vector: a
 - magnitude+direction

Controversial

Everything with direction and magnitude can be considered as vector! The parallelogram rule should be applicable.

October 17, 2013

Vector and Scalar

A review

- Mechanics is governed by two quantities:
 - Scalar: a magnitude
 - Over the sector of the sect

magnitude+direction !

Controversial

Everything with direction and magnitude can be considered as vector! The parallelogram rule should be applicable.

- Both are Tensors!
- Zero-order tensor: Scalar
- first-order tensor: Vector
- Coming from *Tensor Product*

Tensor Product

October 17, 2013

Vector and Scalar

A review

- Mechanics is governed by two quantities:
 - Scalar: a magnitude
 - O Vector: a
 - magnitude+direction

Controversial

Everything with direction and magnitude can be considered as vector! The parallelogram rule should be applicable.

October 17, 2013

Vector and Scalar

A review

- Mechanics is governed by two quantities:
 - Scalar: a magnitude
 - O Vector: a
 - magnitude+direction

Controversial

Everything with direction and magnitude can be considered as vector! The parallelogram rule should be applicable.

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
 - Triangle addition
 - Parallelogram addition
 - Commutative law
 - Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

- Notation: Vector lowercase and boldface type
- Addition:
 - Triangle addition
 - Parallelogram addition
 - Commutative law
 - Associative law
- Subtraction
- Scalar multiplication
- $\bullet~$ Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
 - Triangle addition
 - Parallelogram addition
 - Commutative law
 - Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

• Addition:

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law

Subtraction

- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: ${\bf i},\,{\bf j}$ and ${\bf k}$
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
 - Triangle addition
 - Parallelogram addition
 - Commutative law
 - Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

- Scalar: Italic lowercase
- Notation: Vector lowercase and boldface type
- Addition:
 - Triangle addition
 - Parallelogram addition
 - Commutative law
 - Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- $\bullet~$ Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations

Review

• Scalar: Italic lowercase

• Notation: Vector lowercase and boldface type

- Triangle addition
- Parallelogram addition
- Commutative law
- Associative law
- Subtraction
- Scalar multiplication
- Unit vectors: i, j and k
- Direction cosines

October 17, 2013

Vector Operations Review-Dot or Scalar Product • A first-order scalar tensor product • $\cos \theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{v_1 v_2}$

October 17, 2013

Vector Operations Review-Dot or Scalar Product • $\mathbf{v}_1 \cdot \mathbf{v}_2 = v_1 v_2 \cos \theta$ $v_1 \cos \theta$ • $\cos \theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{2}$ Vo

October 17, 2013

Vector Operations Review-Dot or Scalar Product $v_2 \cos \theta$ A • $\cos \theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{v_1 v_2}$ V

October 17, 2013

Vector Operations Review-Dot or Scalar Product • $\cos \theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{2}$ • $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$ then $\mathbf{v}_1 \perp \mathbf{v}_2$

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 \times \mathbf{v}_2| = v_1 v_2 \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 imes \mathbf{v}_2| = v_1 v_2 \sin heta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 \times \mathbf{v}_2| = v_1 v_2 \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 \times \mathbf{v}_2| = v_1 v_2 \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

$$|\mathbf{a} \! imes \! \mathbf{b}| = \sqrt{(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b}) - (\mathbf{a} \cdot \mathbf{b})^2}$$

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 \times \mathbf{v}_2| = v_1 v_2 \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

 $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = (\mathbf{a}\mathbf{b}\mathbf{d})\mathbf{c} - (\mathbf{a}\mathbf{b}\mathbf{c})\mathbf{d}$

October 17, 2013

Vector Operations

Review- Cross or Vector Product

- $|\mathbf{v}_1 \times \mathbf{v}_2| = v_1 v_2 \sin \theta$
- Triple scalar product
- Triple vector product
- Some useful relations in kinematics and Statics

$$(\mathbf{a} imes \mathbf{b}) \cdot (\mathbf{c} imes \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$$

October 17, 2013

Application of Triple Vector Product

Nothing is useless!

• The Cartesian decomposition of A

$$\mathbf{A}_{S} = rac{1}{2}(\mathbf{A} + \mathbf{A}^{T}), \qquad \mathbf{A}_{SS} = rac{1}{2}(\mathbf{A} - \mathbf{A}^{T})$$

• The *vector* of **A** is:

$$\mathbf{a}\times\mathbf{v}=\mathbf{A}_{SS}\mathbf{v}$$

- The *trace* of **a** is the sums of the eigenvalues of **A**_s, are all real.
- We define the following:

$$\operatorname{vect}(\mathbf{A}) = \mathbf{a} = \frac{1}{2} \begin{bmatrix} a_{32} - a_{23} \\ a_{13} - a_{31} \\ a_{21} - a_{12} \end{bmatrix} \operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} + a_{33}$$

Huma

October 17, 2013

Application of Triple Vector Product

Nothing is useless

Show that

$$\operatorname{vect}(\mathbf{a}\mathbf{b}^{\mathsf{T}}) = -\frac{1}{2}\mathbf{a} \times \mathbf{b}, \qquad \operatorname{tr}(\mathbf{a}^{\mathsf{T}}\mathbf{b}) = \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

٥

October 17, 2013

Newton's Laws of Motion

From your secondary

- First law ($\sum \textbf{F} = \textbf{0})$
- Second law (Dynamic **F** = m**a**)
- Third law (Action & Re-action)

October 17, 2013

Units

International System of metric units (SI)

Quantity		Unit	
Mass	M	Kilogram	
	F		Ν

October 17, 2013

Units

International System of metric units (SI)

Quantity	Dimensional Symbol	Unit	Symbol
Mass	М	Kilogram	Kg
Length	L	meter	m
Time	Т	second	S
Force	F	newton	Ν

October 17, 2013

Units

International System of metric units (SI)

Quantity	Dimensional Symbol	Unit	Symbol
Mass	М	Kilogram	Kg
Length	L	meter	m
Time	Т	second	S
Force	F	newton	Ν

- Bureau International des Poids et Mesure
- an alloy of 90% platinum-10 % iridium

Taarlab Huma

October 17, 2013

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration **F** = m**a**
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - Isliding vector: Unique line of action but not unique point of application.
 - Fixed vector. A fore on a non-rigid body.
 - Action of a force as External and Internal: The relation of external and internal is the subject of Strength of Materials

October 17, 2013

Force Systems-Section A: 2D Force System

Force

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F} = m\mathbf{a}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - sliding vector: Unique line of action but not unique point of application.
 - Fixed vector. A fore on a non-rigid body.
 - Action of a force as External and Internal: The relation of external and internal is the subject of Strength of Materials

October 17, 2013

Force Systems-Section A: 2D Force System

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F} = m\mathbf{a}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true!?
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - sliding vector: Unique line of action but not unique point of application.
 - Fixed vector. A fore on a non-rigid body.
 - Action of a force as *External* and Internal: The relation of external and internal is the subject of *Strength of Materials*

October 17, 2013

Force Systems-Section A: 2D Force System

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F} = m\mathbf{a}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true ??
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - sliding vector: Unique line of action but not unique point of application.
 - Fixed vector. A fore on a non-rigid body.
 - Action of a force as *External* and Internal: The relation of external and internal is the subject of *Strength of Materials*

October 17, 2013

Force Systems-Section A: 2D Force System

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F} = m\mathbf{a}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true !?
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - Isliding vector: Unique line of action but not unique point of application.
 - Fixed vector. A fore on a non-rigid body.
- Action of a force as *External* and Internal: The relation of external and internal is the subject of *Strength of Materials*

October 17, 2013

Force Systems-Section A: 2D Force System

- In statics: Action of one body on another.
- Dynamics: Action which tends to cause acceleration $\mathbf{F} = m\mathbf{a}$
- A force is vector quantity ! direction and magnitude!
- Thus, we can use the parallelogram law! is it true !?
- Treat Force as Fixed vector in the case of cable Tension.
 - Free vector: Movement without rotation
 - Isliding vector: Unique line of action but not unique point of application.
 - Sixed vector. A fore on a non-rigid body.
- Action of a force as *External* and Internal: The relation of external and internal is the subject of *Strength of Materials*

October 17, 2013

Force Systems-Section A: 2D Force System

Force and Principal of Transmissibility

- This channel us to regard Force as sliding vector
- Since we study the resultant of external forces
- Thus, we consider only the magnitude, direction and line of action (besides the point of action)

October 17, 2013

Force Systems-Section A: 2D Force System

Force Classification

- Contact force: Physical contact
- Body force: position of a body within a force field: gravitational, electric: Your weight

Other classifications:

- Concentrated force
- Distributed force

The above classifications depends on the body under study.

October 17, 2013

Force Systems-Section A: 2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

October 17, 2013

Force Systems-Section A: 2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

October 17, 2013

Force Systems-Section A: 2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

October 17, 2013

Force Systems-Section A: 2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

October 17, 2013

Force Systems-Section A: 2D Force System

- We are not wasting our time for this part.
- Parallelogram law for concurrent at a point
- A special case: Two parallel forces
- Rectangular Components

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

Force Systems-Section A: 2D Force System

October 17, 2013

October 17, 2013

Force Systems-Section A: 2D Force System

The gusset plate

Strength of Materials

October 17, 2013

Moment

Moment

- Up to now: force as tendance to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: M = Fd
- The cross product $\mathbf{M} = \mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem, This could be in your exam

TaarLab Huma

October 17, 2013

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: M = Fd
- The cross product $\mathbf{M} = \mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem, This could be in your exam

TaarLab Huma

October 17, 2013

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: M = Fd
- The cross product $\mathbf{M} = \mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem, This could be in your exam

TaarLab Huma

October 17, 2013

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: M = fd.
- The cross product $\mathbf{M} = \mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem, This could be in your exam

October 17, 2013

Moment

Moment

- Up to now: force as tendency to move in a given direction
- Now: tendency to rotated a body about an axis
- This axis (or line) neither intersects nor is parallel to the line of action of the forces.
- Magnitude of the moment: M = fd.
- The cross product $\mathbf{M} = \mathbf{r} \times \mathbf{F}$.
- Varignon's Theorem. This could be in your exam

October 17, 2013

Couple

Couple

- Moment produced by two equal opposite and non-collinear forces
- The vector form could on your exam
- Force-Couple System

October 17, 2013

Couple

Couple

- Moment produced by two equal opposite and non-collinear forces
- The vector form could on your exam
- Force-Couple System

October 17, 2013

Some Hints for the Exam

For instance

- Triple vector product (develop)
- The connection between Statics and Strength of Materials
- Application of law of sine;
- Application of law of cosine;
- Varginon's theorem;
- Derive the vector form of a couple;
- Different forms to represent a vector.

October 17, 2013

Force-Couple System

Force-Couple System

- Force-Couple System
- Replacement of force by an equivalent force-couple system.
- The reverse is also valid.
- They have any applications in mechanics.
- Of paramount importance in *Screw Theory*
- Thus it should be mastered.

October 17, 2013

Example-Moment

October 17, 2013

Example-Moment

October 17, 2013

Example-Moment

October 17, 2013

Example-Moment

October 17, 2013

Example-Moment

TaarLab Huma

October 17, 2013

Resultants-2D

Resultants

- Action of a group of system of forces
- Most mechanical systems deals with system of force
- Reduce to its simple form
- To the end of describing the action
- Definition of resultant: simplest force combination replacing the original force without alerting the external effect.

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

• $\mathbf{r} = \sum \mathbf{f}_i$ • $r_x = \sum (f_x)_i, r_y = \sum (f_y)_i$ • $r = \sqrt{(\sum (f_x)_i)^2 + (\sum (f_y)_i)^2}$ • $\theta = \tan^{-1} \frac{r_y}{r_x} = \tan^{-1} \frac{\sum (f_y)_i}{\sum (f_x)_i}$ • $\mathbf{r} = \sum \mathbf{f}_i$ • $m_O = \sum m_i = \sum (f_i d)$ • $rd = m_O$

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

•
$$\mathbf{r} = \sum \mathbf{f}_i$$

• $r_x = \sum (f_x)_i, r_y = \sum (f_y)_i$
• $r = \sqrt{(\sum (f_x)_i)^2 + (\sum (f_y)_i)^2}$
• $\theta = \tan^{-1} \frac{r_y}{r_x} = \tan^{-1} \frac{\sum (f_y)_i}{\sum (f_x)_i}$
• $\mathbf{r} = \sum \mathbf{f}_i$
• $m_O = \sum m_i = \sum (f_i d)$

• $rd = m_0$

October 17, 2013

Resultants-2D

• $rd = m_C$

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

TaarLab Huma

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

• $rd = m_0$

TaarLab Huma

October 17, 2013

Resultants-2D

Resultants-Mathematic Formulation

TaarLab Huma

October 17, 2013

3D Forces Systems

October 17, 2013

3D Forces Systems-Rectangular Components

Two points on the line of action of the force

TaarLab Huma

October 17, 2013

3D Forces Systems-Rectangular Components

October 17, 2013

3D Moment and Couples

- $\mathbf{m}_O = \mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

October 17, 2013

3D Moment and Couples

- $\mathbf{m}_{\mathcal{O}} = \mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

October 17, 2013

3D Moment and Couples

- $\mathbf{m}_{O} = \mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

October 17, 2013

3D Moment and Couples

October 17, 2013

3D Moment and Couples

- $\mathbf{m}_O = \mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product '
- Moment about an arbitrary axis

October 17, 2013

3D Moment and Couples

- $\mathbf{m}_O = \mathbf{r} \times \mathbf{f}$
- Right-hand rule
- Evaluating the Cross Product
- Moment about an arbitrary axis

October 17, 2013

3D Moment and Couples

- Extended easily from the 2D
- $\mathbf{m} = \mathbf{r}_A \times \mathbf{f} + \mathbf{r}_b \times (-\mathbf{F})$
- Then, $\mathbf{m} = (\mathbf{r}_A - \mathbf{r}_B) \times \mathbf{f} =$
- A very good example
- Equivalent force-couple system

October 17, 2013

3D Moment and Couples

- Extended easily from the 2D
- $\mathbf{m} = \mathbf{r}_A \times \mathbf{f} + \mathbf{r}_b \times (-\mathbf{F})$
- Then, $\mathbf{m} = (\mathbf{r}_A - \mathbf{r}_B) \times \mathbf{f} = \mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple system

October 17, 2013

3D Moment and Couples

- Extended easily from the 2D
- $\mathbf{m} = \mathbf{r}_A \times \mathbf{f} + \mathbf{r}_b \times (-\mathbf{F})$
- Then,

$$\mathbf{m} = (\mathbf{r}_A - \mathbf{r}_B) \times \mathbf{f} = \mathbf{r} \times \mathbf{f}$$

- A very good example
- Equivalent force-couple system

October 17, 2013

3D Moment and Couples

- Extended easily from the 2D
- $\mathbf{m} = \mathbf{r}_A \times \mathbf{f} + \mathbf{r}_b \times (-\mathbf{F})$
- Then, $\mathbf{m} = (\mathbf{r}_A - \mathbf{r}_B) \times \mathbf{f} = \mathbf{r} \times \mathbf{f}$
- A very good example
- Equivalent force-couple system

October 17, 2013

3D Moment and Couples

- Extended easily from the 2D
- $\mathbf{m} = \mathbf{r}_A \times \mathbf{f} + \mathbf{r}_b \times (-\mathbf{F})$
- Then, $\mathbf{m} = (\mathbf{r}_A - \mathbf{r}_B) \times \mathbf{f} =$
- A very good example
- Equivalent force-couple system

October 17, 2013

Resultants in 3D

The State of the Art

- The concept remains the same, Review Eqs. (2/20) and (2/21)
- Three special cases: (Important for exam)
 - Concurrent forces: Only Eq. (2/20)
 - Parallel forces: Sample Problem 2/14
 - Coplanar forces: Article 2/6.

$$\mathbf{r} = \sum \mathbf{f}_i$$

$$\mathbf{m} = \sum \mathbf{m}_i$$

$$r =$$

$$\sqrt{(\sum f_x)^2 + (\sum f_y)^2 + (\sum f_z)^2}$$

$$m = \sqrt{(m_x)^2 + (m_y)^2 + (m_z)^2}$$

Huma

October 17, 2013

Wrench Resultants

Basic Concepts

- When the resultant couple vector is parallel to the resultant force
- Every force and couple system can be reduced to a wrench
- There is a duality between kinematics and statics.
- This duality is governed by Wrench (Statics) and Twist (Kinematics)

October 17, 2013

Some Hints for the Exam

Concepts

- Concept of force-couple system, 3D and 2D.
- Concept of resultant, 3D and 2D
- Concept of rectangular components
- Two methods to represent forces
- Concept of a representing a moment along an axis.
- Three special case for 3D resultant (More concerns on Sample probler 2/14)
- Twist and wrench concept
- Duality of statics and kinematics

Undergradese

What undergrads ask vs. what they're REALLY asking

October 17, 2013

Some Hints for the Exam

Prepare yourself for Section A, 2D

- 2D Force systems Rectangular Components: 2/13, 2/16 and 2/23
- 2D Force systems Moments: 2/33, 2/37, 2/35 and 2/42

- 2D Force systems Couple: 2/60, 2/65 and 2/68
- 2D Force systems, Resultants:

2/76, 2/77, 2/84 and 2/86

Taarlab Huma

I will remember your exam day

October 17, 2013

Some Hints for the Exam

Prepare yourself for Section B, 3D

- 3D Force systems Rectangular Components: 2/99, 2/105 and 2/107
- 3D Force systems Moments and Couples: 2/117, 2/130 and 2/151

- 3D Force systems, Resultants: 2/135, 2/144, 2/145 and 2/147
- Review for Chapter 2: 2/157, 2/161, 2/162 and 2/164

Taarlab Huma

October 17, 2013

Huma

Matlab Workshop

Matlab by Mr. Molaei, Tuesday, 09/27/2011, 10:30 AM

- Programming
- Functions
- Plot
- To the end of:
 - Get ready for your assignments and projects
 Filling the gaps that we are not able to fill in this course

October 17, 2013

Matlab Workshop

Matlab by Mr. Molaei, Tuesday, 09/27/2011, 10:30 AM

- Programming
- Functions
- Plot
- To the end of:
 - Get ready for your assignments and projects
 - Filling the gaps that we are not able to fill in this course

TaarLab Huma

October 17, 2013

Tensor Product

Back

Tensor & Tensor Prodcut

- A multilinear transformation defined over an underlying finite dimensional vector space, V.
- Zero-order Tensors: T^0 : isomorphic to scalar field. Linear transformation from T^0 to T^0 :

$$\alpha[\cdot]: \quad \mathcal{T}^{0} \longmapsto \mathcal{T}^{0} \text{ meaning that } \beta \leftrightarrow \alpha[\beta] = \alpha\beta \qquad (1)$$

• First-order Tensors , \mathcal{T}^1 : Isomorphic to the underlying vector space \mathcal{V} . One has:

•
$$\mathcal{T}^{0} \longmapsto \mathcal{T}^{1}$$
 meaning that $\mathbf{a}[\alpha] = \alpha \mathbf{a}$

• $\mathcal{T}^1 \longmapsto \mathcal{T}^0$ meaning that $\mathbf{a}[\mathbf{b}] = \mathbf{a} \cdot \mathbf{b}$

