Static and Strength of Materials-Chapter 3-Equilibrium

Mehdi Tale Masouleh

October 17, 2013

October 17, 2013

Introductions

Introductions

- A new definition: Statics deals with the description of the force conditions necessary and sufficient to maintain the equilibrium of engineering structures.
- Form your secondary:

$$\mathbf{r} = \sum \mathbf{f}_i = 0$$
 $\mathbf{m} = \sum \mathbf{m}_i = 0$

- Both are necessary and sufficient
- All physical bodies are 3D
- In some cases we can treat them as 2D
- When forces lie on single plane
- Can be projected onto a single plane

The same as Chapter 2:

- Equilibrium in 2D
- Equilibrium in 3D

October 17, 2013

Introductions

Introductions

- A new definition: Statics deals with the description of the force conditions necessary and sufficient to maintain the equilibrium of engineering structures.
- Form your secondary:

$$\mathbf{r} = \sum \mathbf{f}_i = 0$$
 $\mathbf{m} = \sum \mathbf{m}_i = 0$

- Both are necessary and sufficient
- All physical bodies are 3D
- In some cases we can treat them as 2D
- When forces lie on single plane
- Can be projected onto a single plane

The same as Chapter 2:

- Equilibrium in 2D
- 2 Equilibrium in 3D

October 17, 2013

Equilibrium in 2D

Definition of Mechanical System

- By J. Meriam: A body or group of bodies which can be conceptually isolated form all other bodies
- By Concise Oxford Dictionary: Complex whole, set of connected things or parts, organized body of material or immaterial things
- I will give you some definitions. Worth to be read.

October 17, 2013

Equilibrium in 2D

Definition of Mechanical System

- By J. Meriam: A body or group of bodies which can be conceptually isolated form all other bodies
- By Concise Oxford Dictionary: Complex whole, set of connected things or parts, organized body of material or immaterial things
- I will give you some definitions. Worth to be read.

October 17, 2013

Equilibrium in 2D

Definition of Mechanical System

- By J. Meriam: A body or group of bodies which can be conceptually isolated form all other bodies
- By Concise Oxford Dictionary: Complex whole, set of connected things or parts, organized body of material or immaterial things
- I will give you some definitions. Worth to be read.

October 17, 2013

Equilibrium in 2D

Free-body Diagram

- The free-body diagram is the most important single step i the solution of problems in mechanics.
- a diagrammatic representation of the isolated system treated as single body
- Only after such a diagram has been carefully draw should the equilibrium equations be written

October 17, 2013

Equilibrium in 2D

October 17, 2013

Equilibrium in 2D

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Holding a Purse

Taarlab Static

October 17, 2013

Equilibrium in 2D

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Holding a Purse

Taarlab Static

October 17, 2013

Equilibrium in 2D

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Pisa Challenge, A Tower in Masouleh

Taarlab Static

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Pisa Challenge, A Tower in Masouleh

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Pisa Challenge, A Tower in Masouleh

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Pisa Challenge, A Tower in Masouleh

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Pisa Challenge, A Tower in Masouleh

Taarlab Static

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or Compressive and Normal rope to the surface
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Free-body Diagram, Modeling the Action Forces.

- Flexible cable, belt, chain, or rope
- Smooth surfaces
- Rough Surfaces
- Roller support
- Pin connection
- Built-in or fixed connection
- Gravitation attraction

October 17, 2013

Equilibrium in 2D

Equilibrium Conditions

- The resultant of all forces and moments acting on a body is zero
- For the moment any point O
- Based on $\sum \mathbf{f} = m\mathbf{a}$, if $\mathbf{v} = \text{cet}$
- Necessary and sufficient conditions for equilibrium
- Statically balanced mechanisms (A part of your exam) It will be the subject of an upcoming course.

October 17, 2013

Equilibrium in 2D

Equilibrium Conditions

- The resultant of all forces and moments acting on a body is zero
- For the moment any point O
- Based on $\sum \mathbf{f} = m\mathbf{a}$, if $\mathbf{v} = \text{cet}$
- Necessary and sufficient conditions for equilibrium
- Statically balanced mechanisms (A part of your exam) It will be the subject of an upcoming course.

October 17, 2013

Equilibrium in 2D

Equilibrium Conditions

- The resultant of all forces and moments acting on a body is zero
- For the moment any point O
- Based on $\sum \mathbf{f} = m\mathbf{a}$, if $\mathbf{v} = \text{cet}$
- Necessary and sufficient conditions for equilibrium
- Statically balanced mechanisms (A part of your exam) It will be the subject of an upcoming course.

 $\sum f_x = 0$ $\sum f_y = 0$ $\sum m_o = 0$

October 17, 2013

Equilibrium in 2D

Equilibrium Conditions

- The resultant of all forces and moments acting on a body is zero
- For the moment any point O
- Based on $\sum \mathbf{f} = m\mathbf{a}$, if $\mathbf{v} = \text{cet}$
- Necessary and sufficient conditions for equilibrium
- Statically balanced mechanisms (A part of your exam) It will be the subject of an upcoming course.

 $\sum f_x = 0$ $\sum f_y = 0$ $\sum m_o = 0$

October 17, 2013

Equilibrium in 2D

Equilibrium Conditions

- The resultant of all forces and moments acting on a body is zero
- For the moment any point O
- Based on $\sum \mathbf{f} = m\mathbf{a}$, if $\mathbf{v} = \text{cet}$
- Necessary and sufficient conditions for equilibrium
- Statically balanced mechanisms (A part of your exam) It will be the subject of an upcoming course.

 $\sum_{x} f_x = 0$ $\sum_{y} f_y = 0$ $\sum_{x} m_o = 0$

October 17, 2013

- Collinear
- Concurrent at a point
- Parallel
- General

October 17, 2013

Parallel

STATICS AND STRENGTH OF MATERIALS-TALE MASOULEH-

October 17, 2013

October 17, 2013

October 17, 2013

Equilibrium in 2D

Determine p required to being rolling?

$$\sin \alpha = \frac{\sqrt{2rh - h^2}}{r}$$
$$\sum m_0 = 0$$
$$p(r - h) - mgr \sin \alpha = 0$$
$$p = \frac{mg\sqrt{2rh - h^2}}{r - h}$$

October 17, 2013

Equilibrium in 2D

Determine *p* required to being rolling? $\sin \alpha = \frac{\sqrt{2rh - h^2}}{r}$ $\sum m_0 = 0$ $p(r - h) - mgr \sin \alpha = 0$ $p = \frac{mg\sqrt{2rh - h^2}}{r - h}$

October 17, 2013

October 17, 2013

October 17, 2013

Equilibrium in 2D

Determine *p* required to being rolling? $\sin \alpha = \frac{\sqrt{2rh - h^2}}{r}$ $\sum m_0 = 0$ $p(r - h) - mgr \sin \alpha = 0$ $p = \frac{mg\sqrt{2rh - h^2}}{r - h}$

October 17, 2013

Equilibrium in 2D

Determine p required to being rolling?

$$\sin \alpha = \frac{\sqrt{2rh - h^2}}{r}$$

$$\sum m_0 = 0$$

$$p(r - h) - mgr \sin \alpha = 0$$

$$p = \frac{mg\sqrt{2rh - h^2}}{r - h}$$

October 17, 2013

October 17, 2013

Equilibrium in 2D

TaarLab Statics

October 17, 2013

October 17, 2013

Mechanisms Statically Balanced

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

October 17, 2013

Mechanisms Statically Balanced

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

October 17, 2013

Mechanisms Statically Balanced

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

October 17, 2013

Mechanisms Statically Balanced

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

October 17, 2013

Mechanisms Statically Balanced

The State of the Art

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

with spring

October 17, 2013

Mechanisms Statically Balanced

The State of the Art

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

with springs & counterweights

October 17, 2013

Mechanisms Statically Balanced

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

October 17, 2013

Mechanisms Statically Balanced

The State of the Art

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

Two Approaches

- From the equilibrium concepts:
 - $\sum \mathbf{f} = \mathbf{0}, \quad \sum \mathbf{m} = \mathbf{0}$
 - Using potential energy, U:
 - **1** Find the expression for **U**
 - 2 Its derivative equaled to zero
 - Solve the system of equations

October 17, 2013

Mechanisms Statically Balanced

The State of the Art

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

Two Approaches

- From the equilibrium concepts: $\sum f = 0, \quad \sum m = 0$
- Using potential energy, U:
 - **1** Find the expression for **U**
 - 2 Its derivative equaled to zero
 - Solve the system of equations

October 17, 2013

Mechanisms Statically Balanced

The State of the Art

- A major step when building a robot
- Involves ensuring that the motors do not contribute towards supporting the mechanism's weight, for any of the possible configurations, without the help of motors and brakes
- This result can be obtained by using counterweights or springs
- How to formulate the

Two Approaches

- From the equilibrium concepts: $\sum f = 0$, $\sum m = 0$
- Using potential energy, U:
 - $\bigcirc \ \ \mathsf{Find} \ \mathsf{the} \ \mathsf{expression} \ \mathsf{for} \ \mathbf{U}$
 - Its derivative equaled to zero
 - Solve the system of equations

October 17, 2013

3 Suspended Cables

A typical question for exam

• Write the equilibrium equations

$$\sum \mathbf{f} = \mathbf{0}$$
 $\sum \mathbf{m} = \mathbf{0}$

• Use the concept of two points for representing the vector

$$\sum f_x = \sum f_i \frac{x_{Bi} - x_{Ai}}{l_i} = 0$$

$$\sum f_y = \sum f_i \frac{y_{Bi} - y_{Ai}}{l_i} = 0$$

$$\sum f_z = \sum f_i \frac{z_{Bi} - z_{Ai}}{l_i} = 0$$

October 17, 2013

Equilibrium in 2D

Constraints and Statical Determinacy

Necessary and sufficient conditions,

 $\sum \mathbf{f} = \mathbf{0}$ $\sum \mathbf{m} = \mathbf{0}$

- *n_E*: Number of equations, in 2D *n_R* = 3
- *n_R*: Number of unknowns
- It may happen that
 - $n_R > n_E$: Statically indeterminate
 - $n_R = n_E$: Statically determinate
- This refers us to our Adv. Eng. Mathematics

October 17, 2013

Equilibrium in 2D

Constraints and Statical Determinacy

- Necessary and sufficient conditions,
 - $\sum \mathbf{f} = \mathbf{0}$ $\sum \mathbf{m} = \mathbf{0}$
- *n_E*: Number of equations, in 2D *n_R* = 3
- n_R: Number of unknowns
- It may happen that
 - n_R > n_E:
 Statically indeterminate
 - $n_R = n_E$: Statically determinate
- This refers us to our Adv. Eng. Mathematics

Static

October 17, 2013

Equilibrium in 2D

Constraints and Statical Determinacy

- Necessary and sufficient conditions,
 - $\sum \mathbf{f} = \mathbf{0}$ $\sum \mathbf{m} = \mathbf{0}$
- *n_E*: Number of equations, in 2D *n_R* = 3
- n_R: Number of unknowns
- It may happen that
 - n_R > n_E:
 Statically indeterminate
 - $n_R = n_E$: Statically determinate
- This refers us to our Adv. Eng. Mathematics

October 17, 2013

Equilibrium in 2D

Constraints and Statical Determinacy

 \mathbf{p}

- Necessary and sufficient conditions,
 - $\sum \mathbf{f} = \mathbf{0}$ $\sum \mathbf{m} = \mathbf{0}$
- *n_E*: Number of equations, in 2D *n_R* = 3
- n_R: Number of unknowns
- It may happen that
 - In n_R > n_E: Statically indeterminate
 - $n_R = n_E$: Statically determinate
- This refers us to our Adv. Eng. Mathematics

October 17, 2013

Equilibrium in 2D

Constraints and Statical Determinacy

- Necessary and sufficient conditions,
 - $\sum \mathbf{f} = \mathbf{0}$ $\sum \mathbf{m} = \mathbf{0}$
- *n_E*: Number of equations, in 2D *n_R* = 3
- n_R: Number of unknowns
- It may happen that
 - n_R > n_E:
 Statically indeterminate
 - $n_R = n_E$: Statically determinate
- This refers us to our Adv. Eng. Mathematics

October 17, 2013

Equilibrium in 2D (A First Step Toward 3D)

October 17, 2013

Equilibrium in 2D (A First Step Toward 3D)

October 17, 2013

Equilibrium in 2D (A First Step Toward 3D)

Examples of Statically Indeterminate Structures

6-U<u>P</u>S

 $\frac{\text{Your exam questions}}{n_R = ?} \text{ and } n_E = ?$

- Constraints for a R, U, C and S joints
- Number of unknowns per limb
- Number of equations per limb
- Number of equations for the platform
- Repeat the same for a $6-S\underline{P}S$
- Repeat the same for Agile Eye

October 17, 2013

Equilibrium in 2D (A First Step Toward 3D)

Examples of Statically Indeterminate Structures

Agile Eye

 $\frac{\text{Your exam questions}}{n_R = ?} \text{ and } n_E = ?$

- Constraints for a R, U, C and S joints
- Number of unknowns per limb
- Number of equations per limb
- Number of equations for the platform
- Repeat the same for a $6-S\underline{P}S$
- Repeat the same for Agile Eye

October 17, 2013

Equilibrium in 2D

Determine the position of equilibrium

- Free-body diagram
- $s = r\theta$

•
$$\sum m_O = 0$$

•
$$WI \sin \theta - r(kr\theta) = 0$$

•
$$\sin \theta = \frac{kr^2}{WI}\theta$$

• Propose some methods to solve it!

•
$$\sin \theta = \theta - \frac{\theta^3}{2!}$$
 -

TaarLab Statics

October 17, 2013

Equilibrium in 2D

TaarLab Statics

October 17, 2013

Equilibrium in 3D

Examples with spring

- Extension of 2D and nothing else
- Most of the concepts are left to you

$$\sum \mathbf{f} = \mathbf{0} \quad \text{or} \quad \begin{cases} \sum f_x = 0\\ \sum f_y = 0\\ \sum f_z = 0 \end{cases}$$
$$\sum \mathbf{m} = \mathbf{0} \quad \text{or} \quad \begin{cases} \sum m_x = 0\\ \sum m_y = 0\\ \sum m_z = 0 \end{cases}$$

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

Roller on rough surface

Wheel on rail

Two force components

TaarLab Static

October 17, 2013

Equilibrium in 3D

October 17, 2013

Taarlab Static

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

Reactions at supports and connections

TaarLab Statics

October 17, 2013

Equilibrium in 3D

Reactions at supports and connections

Pin and bracket

Hinge and bearing supporting axial thrust and radial load

Three force components (and two couples)

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

Reactions at supports and connections- Exam questions

TaarLab Static

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

October 17, 2013

Equilibrium in 3D

Example

October 17, 2013

Equilibrium in 3D

October 17, 2013

Some Hints for the Exam

Prepare yourself, All the sample problems and

- Section A: Equilibrium in two dimensions: 3/5, 3/10, 3/31 3/46, 3/55
- Section B: Equilibrium in three dimensions: 3/63, 3/73, 3/79, 3/81, 3/85

- Chapter Review: 3/98, 3/101, 3/107, 3/108, 3/109
- FBD, Equilibrium conditions, Question exams (in slides)

Taarlab Static

