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Human and Robot Interaction Laboratory
Parallel Robots Courses
By: M. Tale Masouleh

TA: Mohammad Hadi Farzaneh

Problem 1
Consider the 2-DOF parallel robots represented in Fig. 2.

1. Obtain the IKP;

2. Obtain the FKP;

3. Express the Jacobian matrix:

• By differentiating the IKP
• Using screw theory
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Figure 2.1: Planar manipulator with four revolute actuators, Problem 1.

A1 A2 A3 eρ1 eρ2 eρ3 C ′1 C ′2 C ′3
x 0 6 3 1 -0.5 -0.5 0 2 1
y 0 0 5.196 0

√
3/2 −

√
3/2 0 0 1.732

Table 2.1: The design parameters of the 3-PRR planar parallel robot, Prob-
lem 2.

4. Obtain the singularity expression;

5. Obtain the singularity configurations and justify them using screw the-
ory;

6. Obtain the relation for the static problem;

Problem 2
Consider a 3-PRR parallel robot, as depicted schematically in Fig. 2 with
the design parameters as given in Table 2.1. Obtain the minimal-degree
polynomial expression for the singularity loci for φ = 0. To do so you should
use the reasoning given in the course.
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Figure 2.2: A 3-PRR planar robot, Problem 2.

Details About Problem 2
Assume that three reciprocal lines, called Li, intersect at pointM(xM, yM).
Therefore, the vector, bi, i = 1, 2, 3, connecting a given point from Li, prefer-
ably a point where a joint is attached to, to M should be concurrent with
Li. Therefore, the vector normal to Li, called nLi , must be also the nor-
mal vector of bi. If the aforementioned condition is satisfied, then it can
be readily concluded that all Li, are concurrent and the mechanism exhibits
a singularity. Following paragraphs substantiate the foregoing procedure in
more details. The above geometric reasoning can be written mathematically
as:

nLi · bi = 0, (2.1)

In the above, vector nLi and bi should be written with respect to the end-
effector pose (position and orientation), (x, y, φ) upon substituting the inverse
kinematic expression which leads to:

fi = f(x, y, φ, xM, yM, Di), i = 1, 2, 3 (2.2)
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Algorithm 1 The pseudo-code of the algorithm to obtain the minimal-degree
polynomial representation of the singularity loci.

1: Input: Di % design parameters of the planar parallel mechanism
2: Output: ffinal(x, y, φ,Di) % singularity loci
3: Li, i = 1, 2, 3 % reciprocal lines of each limb
4: nLi % The vector normal to Li
5: bi % the vector connecting a given point from Li to pointM (a preferably

point in the space)
6: for i from 1 to 3 do
7: nLi · bi = 0 =⇒ fi = fi(x, y, φ, xM, yM, Di)
8: f ′i = raise2square(isolate(fi,√ )) % first, isolate the square root

and then raise to square both sides of equation
9: end for

10: f12=resultant(f ′1,f ′2,xM)
11: f13=resultant(f ′1,f ′3,xM)
12: ffinal=resultant(f12,f13,yM)

where Di is the set of design parameters of the ith limb. From Eq. (2.2),
three equations will be obtained which describes the singularity loci of the
mechanism as a whole. Each of these equations includes just one square
root, which usually appears upon substituting the inverse kinematic into eq.
(2.1). One can simply isolate the square root and upon raising the whole
expression to its square, the square root will be eliminated, leading to f ′i ,
i = 1, 2, 3. Reaching this step, the three polynomials f ′i , i = 1, 2, 3 are
considered two by two and, at each stage, one variable is eliminated using
dyalitic elimination concept, i.e., using the so-called resultant method. Thus
coordinate ofM(xM,yM), are subject to be eliminated to the end of obtaining
a polynomial expression with respect to (x, y), called ffinal, known as the
minimal-degree representation of singularity loci for a given orientation of
the end-effector:

f12 = resultant(f ′1, f ′2, xM),
f13 = resultant(f ′1, f ′3, xM),
ffinal = resultant(f12, f13, yM).

In the above, Resultant(m,n, p) is a polynomial expression generated by
eliminating the common variable p between the two polynomials m and n.



5

Finally, the procedure ends up with the expression of the singularity loci as,
ffinal = f(x, y, φ,Di). In what follows, the algorithm is applied to 3-PRR
PM and results are presented.

The reasoning applied in the algorithm is: First f1 and f2 are considered
together and xM is vanished which leads to a new expression, named f12.
By the same token xM will be vanished upon considering f1 and f3 which
leads to f13. Finally, f12 and f13 are considered together and yM is eliminated
through them. Now, the only remained variables in this expression are (x, y),
i.e. the position of the end effector. This expression describes the mechanism
singularity loci with respect to the end-effector variables.

Problem 3
For the following mechanisms obtain:

1. The constant-orientation workspace for φ = {0, π6 ,
π
3 ,

π
2} using the the

following approaches and compare your resluts:

• Node search approaches (By combining the Newton-Raphson and
bisection approaches);

• The geometric constructive approach (Ask Amir Hossein for more
details);

• Using a CAD software;

2. The area of the constant-orientation workspace for φ = {0, π6 ,
π
3 ,

π
2}.

3. The evolution of the constant-orientation workspace for φ ∈ [0 π
2 ]

• The 3-PRR planar parallel mechanisms as depicted in Fig. 2 with the
following design parameters:
λa = 700 mm, λb = 1500 mm, ρmin = 200 mm, ρmax = 1500 mm,
l = 300 mm.

• The 3-RRR planar parallel mechanisms as depicted in Fig. ?? with the
folowing design parameters:
l1 = 90 mm, l2 = 90 mm rb = 235 mm, re = 40
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Problem 4
Obtain the constant-orientation workspace and the corresponding volume of
the Gough-Stewart platform where the geometric parameters and orientation
of mobile platform are as given in Table 1 of the paper entitled “Determi-
nation of the Workspace of 6-DOF Parallel Manipulators”. Click here to
download the paper.

Note: In your report, you should present explicitly Figs. (4,
6–9) for the orientation of the end-effector given at the beginning
of Section 5 page 334.

Use the following approaches and compare your results:

• Node search approaches (By combining the Newton-Raphson and bi-
section approaches);

• The geometric constructive approach (Ask Amir Hossein or Hossein
Saadatzi for more details);

• Using a CAD software.

Problem 5
Solve the above problem for the Gough-Stewart platform, Fig. 2.3 built at
TaarLab, University of Tehran. You should also consider limit joints and
mechanical interferences. For dimensions discuss with Mojtaba Yazadani
and Mahmoud Ghafouri.

Problem 6
Solve Problem 4 by considering Tripteron, Fig. 2.4, the one built at Taar-
Lab, as case study. You should also consider limit joints and mechanical
interferences. For dimensions discuss with Mojtaba Yazadani and Mahmoud
Ghafouri.

http://www.taarlab.com/en/images/Gosselin_1990b.pdf
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Problem 7
Using the Chebychev formula and screw theory find the DOF and motion
pattern of the Agile 2-DOF. Solve the Static problem upon considering just
the mass of the end-effecotr. For dimensions discuss with Esmail Rostami.
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(a) CAD model

(b) Prototype

Figure 2.3: The Gough-Stewart Platform Built at TaarLab, University of
Tehran.
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(a) CAD model

(b) Prototype

Figure 2.4: The Tripteron Built at TaarLab, University of Tehran.
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Figure 2.5: Agile Eye 2-DOF, Problem 7.
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