Static and Strength of Materials
 Chapter 4-Structures-Part II

Mehdi Tale Masouleh

November 8, 2013

Plane Trusses

Truss connections and supports

- For connection:

© Welded

(2) Riveted
© we assume all as pin joints

- Pass through the same
point
- For large trusses at one of
the supports:
(1) A roller
- Some kind of slip joint
- Why!? (This could be
your exam question)

Plane Trusses

Truss connections and supports

- For connection:

(1) WeldedRiveted
we assume all as pin joints
Pass through the same point

- For large trusses at one of the supports:A rollerA rocker
Some kind of slip joint
- Why!? (This could be

your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
(2) Rivetedwe assume all as pin jointsPass through the same point
- For large trusses at one of the supports:A rollerA rocker
Come kind of slip joint

- Why!? (This could be
your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
(2) Riveted
we assume all as pin joints
- Pass through the same point
- For large trusses at one of the supports:A rollerA rocker
- Some kind of slip joint
- Why!? (This could be

your exam question)

TaarLab

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
(Z) Riveted
(3) we assume all as pin joints
- Pass through the same point
- For large trusses at one of the supports:
(1) A roller
© A rocker
- Some kind of slip joint
- Why!? (This could be
your exam question)

Plane Trusses

Truss connections and supports

- For connection:

(1) Welded

- Riveted
© we assume all as pin joints
(Pass through the same point
- For large trusses at one of the supports:
(1) A roller
(3) A rocker
- Some kind of slip joint
- Why!? (This could be

your exam question)

Plane Trusses

Truss connections and supports

- For connection:

(1) Welded

- Riveted
(3) assume all as pin joints
(Pass through the same point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
- Some kind of slip joint
- Why!? (This could be

your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
- Riveted
© we assume all as pin joints
- Pass through the same
point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker

(3) Some kind of slip joint
(Why!? (This could be your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
- Riveted
© we assume all as pin joints
- Pass through the same point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint
() Why!? (This could be

your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
- Riveted
- we assume all as pin joints
- Pass through the same
point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint

(Why!? (This could be
your exam question)

Plane Trusses

Truss connections and supports

- For connection:

(1) Welded

- Riveted

O we assume all as pin joints

- Pass through the same
point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint
(- Why!? (This could be

Finally, I corrected it your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
- Riveted
(we assume all as pin join
- Pass through the same point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint
(- Why!? (This could be

Québec Bridge
Vive le Québec libre
your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
- Riveted
- we assume all as pin join
- Pass through the same point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint
() Why!? (This could be

Québec Bridge
your exam question)

Plane Trusses

Truss connections and supports

- For connection:
(1) Welded
(Civeted
C we assume all as pin joints
- Pass through the same
point
- For large trusses at one of the supports:
(1) A roller
(2) A rocker
(3) Some kind of slip joint
(1) Why!? (This could be

Like Quebecois, Never Give Up! 3 times collapsed Quebec Bridge

Analysis of Trusses

Method of Joints

(1) A truss can be regarded as

- a group of pines
- two-forces members

Analysis of Trusses

Method of Joints

Follow theses steps

Analysis of Trusses

Method of Joints

Follow theses steps
(1) If the support reactions are not given, draw a FBD of the entire truss
(From the above FBD determine all the supports reactions using the equations equilibrium.

- Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
- Write the two equilibrium conditions.

Analysis of Trusses

Method of Joints

Follow theses steps
(C) If the support reactions are not given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.

- Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
(4) Write the two equilibrium conditions.

Analysis of Trusses

Method of Joints

Follow theses steps
() If the support reactions are not
given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.

Write the two equilibrium
 conditions.

Analysis of Trusses

Method of Joints

Follow theses steps
(1) If the support reactions are not given, draw a FBD of the entire truss
() From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
(4) Write the two equilibrium conditions.

Analysis of Trusses

Method of Joints

Follow theses steps
(1) If the support reactions are not given, draw a FBD of the entire truss
(ㅇ) From the above FBD determine all the supports reactions using the equations equilibrium.

- Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
() Write the two equilibrium
 conditions.

Analysis of Trusses

Method of Joints

Follow theses steps
(1) If the support reactions are not given, draw a FBD of the entire truss
(3) From the above FBD determine all the supports reactions using the equations equilibrium.

- Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
(4) Write the two equilibrium conditions.
(6) Repeat sted 2 \& 3 for each

Analysis of Trusses

Method of Joints

Follow theses steps

(1) If the support reactions are not
given, draw a FBD of the
entire truss
() From the above FBD determine all the supports reactions using the equations equilibrium.

- Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.

Analysis of Trusses

Method of Joints

Follow theses steps
() If the support reactions are not given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
() Write the two equilibrium conditions.
(5) Repeat step 2 \& 3 for each

Analysis of Trusses

Method of Joints

Follow theses steps
() If the support reactions are not given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
(- Write the two equilibrium conditions.
(5) Repeat step 2 \& 3 for each

Analysis of Trusses

Method of Joints

Follow theses steps
() If the support reactions are not given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
() Write the two equilibrium conditions.
(5) Repeat step 2 \& 3 for each

Analysis of Trusses

Method of Joints

Follow theses steps
() If the support reactions are not given, draw a FBD of the entire truss
(2) From the above FBD determine all the supports reactions using the equations equilibrium.
(3) Draw the FBD of a joint where at least one known load exists and where not more tan two unknowns force are present.
(4) Write the two equilibrium
conditions.
(5) Repeat sted 2 \& 3 for each

Analysis of Trusses-Method of Joints

Zero-forces Members
(1) Zero-forces members can be removed from the analysis

```
First case:
    - The joint has only two
    non-collinear members
    - There is no external load or
        support reaction at that joint
Second case:
    - Three members form a truss joint
    - Two of the members are collinear
    - There is no external load or
        support reaction at that joint
    - The third non-collinear member
        is a zero force member
```


Analysis of Trusses-Method of Joints

Zero-forces Members

(1) Zero-forces members can be removed from the analysis

- First case:
- The joint has only two non-collinear members
- There is no external load or support reaction at that joint

Second case:

- Three members form a truss joint
- Two of the members are collinear
- There is no external load or support reaction at that joint
- The third non-collinear member

Analysis of Trusses-Method of Joints

Zero-forces Members

(1) Zero-forces members can be removed from the analysis

- First case:
- The joint has only two non-collinear members
- There is no external load or support reaction at that joint
(3) Second case:
- Three members form a truss joint
- Two of the members are collinear
- There is no external load or support reaction at that joint
- The third non-collinear member is a zero force member

Analysis of Trusses-Method of Joints

Zero-forces Members

(1) Zero-forces members can be removed from the analysis

- First case:
- The joint has only two non-collinear members
- There is no external load or support reaction at that joint
(3) Second case:
- Three members form a truss joint
- Two of the members are collinear
- There is no external load or support reaction at that joint
- The third non-collinear member is a zero force member

Analysis of Trusses-Method of Joints

Zero-forces Members

(1) Zero-forces members can be removed from the analysis

- First case:
- The joint has only two non-collinear members
- There is no external load or support reaction at that joint
(3) Second case:
- Three members form a truss joint
- Two of the members are collinear
- There is no external load or support reaction at that joint

$\mathbf{F}_{A B}$

$$
\begin{aligned}
& F_{A E}=F_{A C} \\
& F_{A B}=F_{A D}
\end{aligned}
$$

- The third non-collinear member is a zero force member

Analysis of Trusses

Internal and external redundancy,

(For your exam as true or false)

- A statically indetermine truss.
(1) External
(2) Internal
- $m+3=2 j$
- Necessary condition (Quiz)
- If $m+3>2 j$, more members than independent equations, statically indeterminate internally with redundant members.
- if $m+3<2 j$, deficiency of internal
 members, the truss is unstable and will collapse under load.

Analysis of Trusses

Internal and external redundancy, Some examples

- $m=19, j=11$, then $22=22$. The truss is statically determine both externally and internally.

```
m=19j=6, then 12 = 12.
The truss is statically
determine both externally
and internally.
```


Analysis of Trusses

Internal and external redundancy, Some examples

$22=22$. The truss is
statically determine both
externally and internally.

- $m=19 j=6$, then $12=12$.

The truss is statically determine both externally and internally.

Analysis of Trusses, Methods of Sections

Illustration of the method

First the external FBD
Assume an imaginary section
Divide it into two parts
Draw the FBD of each part
Write the equilibrium conditions for
 each part

Analysis of Trusses, Methods of Sections

Illustration of the method

- First the external FBD

Assume an imaginary section
Divide it into two parts
Draw the FRD of each nart
Write the equilibrium conditions for
 each part

Analysis of Trusses, Methods of Sections

Illustration of the method

- First the external FBD
- Assume an imaginary section

Divide it into two parts
Draw the FBD of each part
M/rite the equilihrium conditions for
 each part

Analysis of Trusses, Methods of Sections

Illustration of the method

- First the external FBD
- Assume an imaginary section
- Divide it into two parts

Draw the FBD of each part Write the equilibrium conditions for
 each part

Analysis of Trusses, Methods of Sections

Illustration of the method

- First the external FBD
- Assume an imaginary section
- Divide it into two parts
- Draw the FBD of each part

Analysis of Trusses, Methods of Sections

Illustration of the method

- First the external FBD
- Assume an imaginary section
- Divide it into two parts

- Write the equilibrium conditions for each part

Analysis of Trusses, Method of Joints

Some examples

- Find $C G$ and $C F$.
- $m+3=2 j$!
- The order of joint: A, B, G and C
- At joint G the coordinate frame is along $A F$

Analysis of Trusses, Method of Joints

Some examples

Analysis of Space Trusses, Not Subject of Exam.

Some examples

- A space truss is the three-dimensional counterpart of the plane truss.
- Statically balanced space truss
(1) $m+6=3 j$ necessary but not sufficient! Why.
(2) $m+6=3 j$ statically indeterminate internally with redundant members.
(3) $m+6<3 j$ Deficiency of internal members, subject to collapse.

