

Problem 1

Given the following 3×3 matrix:

$$
\mathbf{R}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \tag{1.1}\\
-\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right]
$$

1. Show that it is a rotation matrix
2. Determine a unit vector that defines the axis of rotation and the angle (in degrees) of rotation.
3. What are the Euler parameters representing \mathbf{R} ?

Figure 1.1: Schematic for Problem 3.

Problem 2

Solve Exercise 2.29

Problem 3

In Fig. ??, a plate is moved from the horizontal base to an inclined surface by a manipulator. With respect to the \mathbf{i}, \mathbf{j} and \mathbf{k} bases, determine:

1. The rotation matrix describing this operation;
2. The axes of rotation and the corresponding rotation angle about this axes.

Problem 4

Consider the case of two particles of mass m_{1} and m_{2} each attached at the end of a mass less rod of length l_{1} and l_{2}, respectively. Moreover, the second

Figure 1.2: The double pendulum, Problem 4.
rod is also attached to the first particle. Derive the equations of motion for the two particles:

1. In frame $O_{1}\left(x_{1}, y_{1}\right)$
2. In frame $O_{2}\left(x_{2}, y_{2}\right)$
3. In frame $O_{3}\left(x_{3}, y_{3}\right)$

Assume, $m_{1}=m_{2}=1, l_{1}=l_{2}=2$ and $\theta_{1}=\theta_{2}=0$. Compare your results with the one obtained from ADAMS.

Problem 5

Solve Exercise 2.35

Figure 1.3: Schematic of a 3-DOF serial manipulator, Problem 6.

Problem 6

Consider the 3-DOF serial manipulator depicted schematically in Fig. ??. The fixed based is denoted as $O_{x y}$ where the mobile frames are represented as $O_{x_{i} y_{i}}$ fixed to the $i^{\text {th }}$ limb. Find the absolute acceleration of point P :

- with respect to the fixed frames
- with respect to the frame 1
- with respect to frame 2
- with respect to frame 3

Problem 7

Solve Exercise 3.6

Problem 8

Solve Exercise 3.7

Problem 9

Solve Exercise 3.8

