

On the Singularity-free Workspace of Parallel Robots Using Interval Analysis

mmmmmmm Hadi Farzaneh Kaloorazi¹

Supervisor: Dr. Mehdi Tale Masouleh¹ Co-supervisor: Dr. Stéphan Caro² Advisor: Dr. Mehdi Fakour¹

> ¹Faculty of New Sciences & Technologies University of Tehran ²IRCCyN, Nantes, France

Outline

2

- Introduction
- Kinematics and Jacobian Analysis
- Necessity of the Research
- Optimization
 - History of the Research
 - Publications
- 5 Methodology
 - Interval Analysis
- 6 Obtained Results
 - Maximal Singularity-free Circle
 - Ongoing Works
- 8 Schedule
- 9 Acknowledgement

singularity-free workspace Parallel Robots

Outline

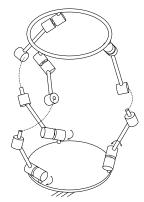
Parallel Robots
 Introduction

• Kinematics and Jacobian Analysis

- Necessity of the Research
- 3 Optimization
- 4 History of the Research
 - Publications
- 5 Methodology
 - Interval Analysis
- 6 Obtained Results
 - Maximal Singularity-free Circle
- Ongoing Works
- Schedule
- Acknowledgement

Parallel Robots

Introduction


Parallel Robots

Mechanisms under study

• Parallel mechanisms (PM)

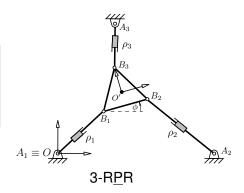
- Planar mechanisms
- 6-Degree-of-freedom
- Cable driven robots

Figure presented in a thesis by Xianwen Kong

General parallel mechanism

Parallel Robots

Introduction


Parallel Robots

Mechanisms under study

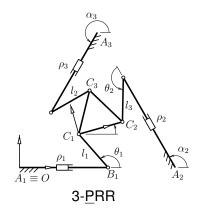
• Parallel mechanisms (PM)

- Planar mechanisms
- 6-Degree-of-freedom
- Cable driven robots

Figure presented in a paper by Ilian Bonev

Parallel Robots

Introduction


Parallel Robots

Mechanisms under study

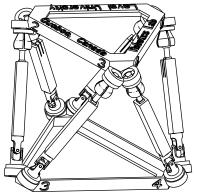
• Parallel mechanisms (PM)

- Planar mechanisms
- 6-Degree-of-freedom
- Cable driven robots

Figure presented in a paper by Ilian Bonev

Parallel Robots

Introduction


Parallel Robots

Mechanisms under study

• Parallel mechanisms (PM)

- Planar mechanisms
- 6-Degree-of-freedom
- Cable driven robots

Built in Laval University

Gough-Stewart Platform (MSSM)

Parallel Robots

Introduction

Parallel Robots

Mechanisms under study

• Parallel mechanisms (PM)

- Planar mechanisms
- 6-Degree-of-freedom
- Cable driven robots

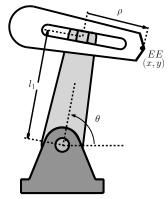
A Cable-driven robot, Arecibo Observatory in Puerto Rico

Parallel Robots

Kinematics and Jacobian Analysis

Outline

- Introduction
- Kinematics and Jacobian Analysis
- Necessity of the Research
- Optimization
- 4 History of the Research
 - Publications
- 5 Methodology
 - Interval Analysis
- 6 Obtained Results
 - Maximal Singularity-free Circle
- Ongoing Works
- Schedule
- Acknowledgement


Parallel Robots

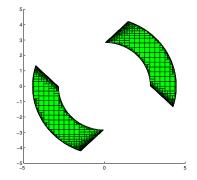
Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

Two kinematic properties

- Workspace (Stroke of the actuators)
 - Serial manipulator 2-DoF RP (joint work)
 - 3-RPR, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations
 - 3-<u>P</u>RR

2-DoF RP serial manipulator


Parallel Robots

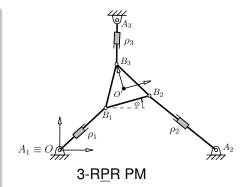
Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

Two kinematic properties

- Workspace (Stroke of the actuators)
 - Serial manipulator 2-DoF RP (joint work)
 - 3-RPR, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations
 - 3-<u>P</u>RR

Workspace of 2-DoF RP

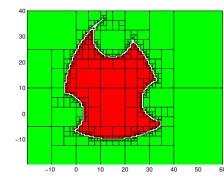

Parallel Robots

Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

Two kinematic properties

- Workspace (Stroke of the actuators)
 - Serial manipulator
 2-DoF RP (joint work)
 - 3-RPR, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations
 - ▶ 3-<u>P</u>RR


Parallel Robots

Kinematics and Jacobian Analysis

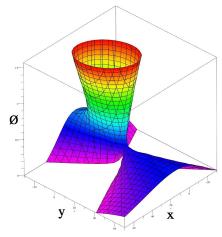
Kinematics and Jacobian Analysis

Two kinematic properties

- Workspace (Stroke of the actuators)
 - Serial manipulator 2-DoF RP (joint work)
 - 3-RPR, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations
 2 PPP
 - 3-<u>P</u>RF

Workspace of 3-RPR PM, implemented in Matlab

Parallel Robots


Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

Two kinematic properties

- Workspace (Stroke of the actuators)
 - Serial manipulator
 2-DoF RP (joint work)
 3-RPR, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations

• 3-<u>P</u>RR

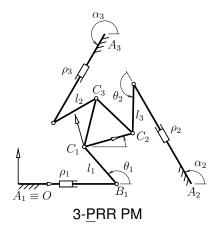
Singularity loci of 3-RPR PM

(a) < (a) < (b) < (b)

Parallel Robots

Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

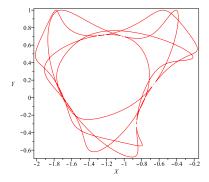

Two kinematic properties

 Workspace (Stroke of the actuators)

> Serial manipulator
> 2-DoF RP (joint work)
> 3-RPR, using interval analysis

Singularity loci

- 3-RPR, quadratic equations
- 3-<u>P</u>RR

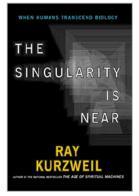

Parallel Robots

Kinematics and Jacobian Analysis

Kinematics and Jacobian Analysis

Two kinematic properties

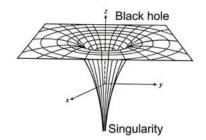
- Workspace (Stroke of the actuators)
 - Serial manipulator
 2-DoF RP (joint work)
 3-R<u>P</u>R, using interval analysis
- Singularity loci
 - 3-RPR, quadratic equations
 - 3-<u>P</u>RR



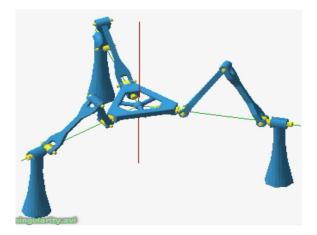
Singularity of 3-<u>P</u>RR PM, form implicit formulation, ezplot

Necessity of the research

Reliability

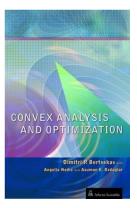

- The workspace of a mechanism must be singular-free
- Why circle?

Necessity of the research


Reliability

- The workspace of a mechanism must be singular-free
- Why circle?

singularity-free workspace Necessity of the Research


Necessity of the research

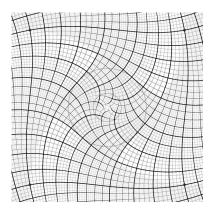
Mathematical framework

Convex Optimization

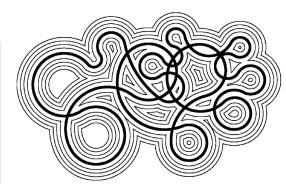
- Interval Analysis
- Other methods
 - Grid (network)
 - Offset approach
 - Evolutionary approaches

Mathematical framework

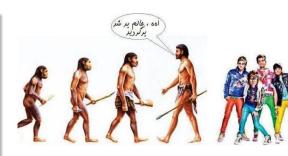
- Convex Optimization
- Interval Analysis
- Other methods
 - Grid (network)
 - Offset approach
 - Evolutionary approaches


Introduction to INTERVAL ANALYSIS

Ramon E. Moore R. Baker Kearfott Michael J. Cloud


Mathematical framework

- Convex Optimization
- Interval Analysis
- Other methods
 - Grid (network)
 - Offset approach
 - Evolutionary approaches


Mathematical framework

- Convex Optimization
- Interval Analysis
- Other methods
 - Grid (network)
 - Offset approach
 - Evolutionary approaches

Mathematical framework

- Convex Optimization
- Interval Analysis
- Other methods
 - Grid (network)
 - Offset approach
 - Evolutionary approaches

singularity-free workspace History of the Research Publications

Outline

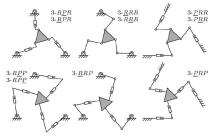
Introduction Kinematics and Jacobian Analysis History of the Research Publications Interval Analysis Maximal Singularity-free Circle

< ロ > < 同 > < 回 > < 回 >

9/28

9 Acknowledgement

Publications


Literature

Papers

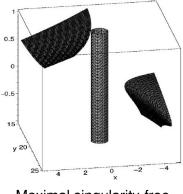
 I. Bonev, D. Zlatanov, C. Gosselin
 "Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

3-DoF planar parallel mechanisms

Publications


Literature

Papers

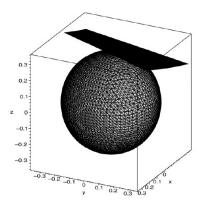
 H. Li, C. Gosselin, M. Richard "Determination of maximal singularity-free zones in the workspace of planar three-degree-of-freedom parallel mechanisms"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

Maximal singularity-free cylinder with $\phi \epsilon$ [-90°, 90°]

Publications


Literature

Papers

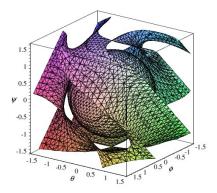
 H. Li, C. Gosselin, M. Richard "Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough-Stewart platform"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

Maximal singularity-free sphere

Publications


Literature

Papers

 Q. Jiang, C. Gosselin
 "Determination of the maximal singularity-free orientation workspace for the Gough-Stewart platform"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

The maximal singularity sphere

Publications

Literature

Papers

 G. Abbasnejad, H. Daniali, and S. Kazemi, "A New Approach to Determine the Maximal Singularity-free Zone of 3-RPR Planar Parallel Manipulator"

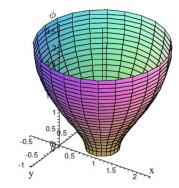
Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

 \sim

Particle Swarm Optimization (PSO)

Publications


Literature

Papers

 Q. Jiang and G. C.M., "Geometric Synthesis of Planar 3-RPR Parallel Mechanisms for Singularity-free workspace"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

Evolution of the singularity circle vs ϕ

Publications

Literature

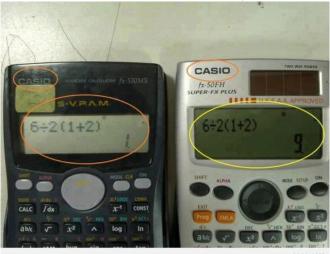
Papers

 Q. Jiang and C. Gosselin, "The Maximal Singularity-Free Workspace of Planar 3-RPR Parallel Mechanisms"

Method and shortage

- Lagrangian multiplier
- Fixed center point
- Only 3-RPR

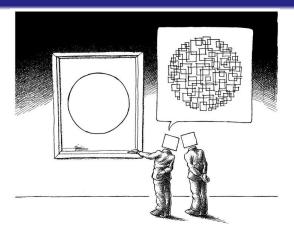
singularity-free workspace Methodology


Interval Analysis

Outline

- Parallel Robots
 - Introduction
 - Kinematics and Jacobian Analysis
- Necessity of the Research
- Optimization
- History of the Research
 - Publications
- 5 Methodology
 - Interval Analysis
 - Obtained Results
 - Maximal Singularity-free Circle
 - 7 Ongoing Works
 - 8 Schedule
 - Acknowledgement

singularity-free workspace
Methodology
Interval Analysis


Introduction to Interval Analysis

seen on 96A6.COM

Methodology

Interval Analysis

$$f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y}$$

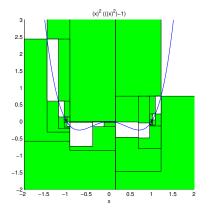
Matlab	Scilab	C (double)	Maple (10 Digits)	Maple (20 digits)	
-1.1806×10^{21}	-1.1806×10^{21}	1.1726039	0.1×10^{28}	$ -1 \times 10^{17}$	I

12/28

singularity-free workspace Methodology

Interval Analysis

Introduction


Usages

 Finding roots of functions

- Finding extermum points
- Surfaces

Education method

Swapping teacher and student position! Scientific negotiation!

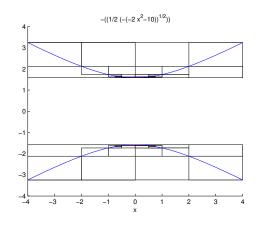
◆ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

singularity-free workspace Methodology

Interval Analysis

Introduction

Usages


• Finding roots of functions

 Finding extermum points

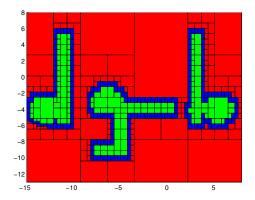
Surfaces

Education method

Swapping teacher and student position! Scientific negotiation!

Methodology

Interval Analysis


Introduction

Usages

- Finding roots of functions
- Finding extermum points
- Surfaces

Education method

Swapping teacher and student position! Scientific negotiation!!

Methodology

Interval Analysis

Education Method

Usages

- Finding roots of functions
- Finding extermum points
- Surfaces

Education method

Swapping teacher and student position!

Scientific negotiation!!

Methodology

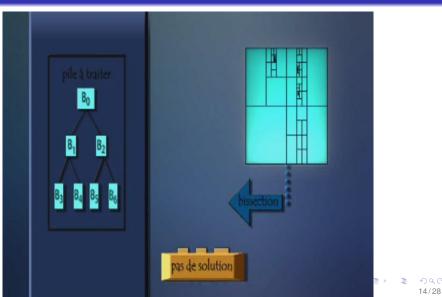
Interval Analysis

Education Method

Usages

- Finding roots of functions
- Finding extermum points
- Surfaces

Education method


Swapping teacher and student position! Scientific negotiation!

Methodology

Interval Analysis

Interval Analysis Video

Obtained Results

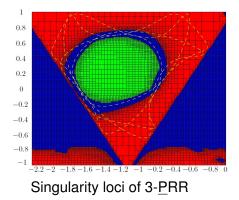
Maximal Singularity-free Circle

Outline

- Parallel Robots
 - Introduction
 - Kinematics and Jacobian Analysis
- 2 Necessity of the Research
- Optimization
- 4 History of the Research
 - Publications
- 5 Methodology
 - Interval Analysis
- 6 Obtained Results
 - Maximal Singularity-free Circle

< ロ > < 同 > < 回 > < 回 >

- Ongoing Works
- Schedule
- Acknowledgement


Obtained Results

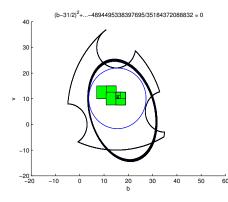
Maximal Singularity-free Circle

Finding Circle

Algorithm

- Fixed center
- Unknown center ⇒
 Paper submitted to ICRA
 2013
 "The Maximal
 Singularity-free Circle of
 3-RPR Planar Parallel
 Mechanisms Using Interval
 Analysis and Geometric
 Constructive Approach"

Obtained Results


Maximal Singularity-free Circle

Finding Circle

Algorithm

Fixed center

 Unknown center ⇒ Paper submitted to ICRA 2013
 "The Maximal Singularity-free Circle of 3-RPR Planar Parallel Mechanisms Using Interval Analysis and Geometric Constructive Approach"

Maximal singularity-free circle of 3-RPR, by considering workspace

・ロト ・回ト ・ヨト ・ヨト

Obtained Results

Maximal Singularity-free Circle

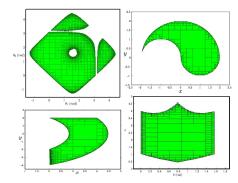
ICRA 2013 Paper

Video submitted to ICRA 2013

University of Tehran Faculty of New Science and Technology

The Maximal Singularity-free Circle of 3-RPR Planar Parallel Mechanisms Using Interval Analysis

By M. H. Farzanch M. T. Masculch B. Mashhadi

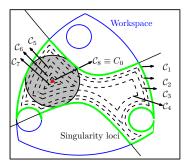

Obtained Results

Maximal Singularity-free Circle

ICRoM 2013 Papers

Submitted papers

- With Mrs. Ansari, "Determining the Workspace and Joint-space of 2-DoF Serial Manipulators via Interval Analysis"
- With Mr. Mashhadi,
- With Mrs. Chaee bakhsh,
- With Mr. Behnam Mashhadi,

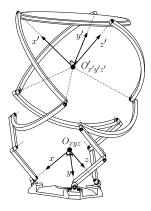

Obtained Results

Maximal Singularity-free Circle

ICRoM 2013 Papers

Submitted papers

- With Mrs. Ansari,
- With Mr. Mashhadi, "The Maximal Singularity-free Circle in the Workspace of 3-RPR Planar Mechanisms Using Interval Analysis and Geometrical Approach"
- With Mrs. Chaee bakhsh,
- With Mr. Behnam Mashhadi,


Obtained Results

Maximal Singularity-free Circle

ICRoM 2013 Papers

Submitted papers

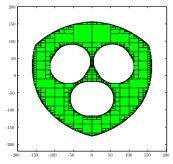
- With Mrs. Ansari,With Mr. Mashhadi,
- With Mrs. Chaee bakhsh, "Kinematics of a Spherical Parallel Mechanism with Identical Limb Structures Using the Linear Implicitization Algorithm and Euclidean Geometry"
- With Mr. Behnam Mashhadi,

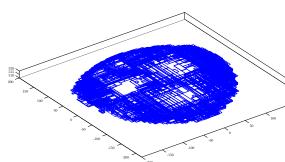
Obtained Results

Maximal Singularity-free Circle

ICRoM 2013 Papers

Submitted papers


- With Mrs. Ansari,
- With Mr. Mashhadi,
- With Mrs. Chaee bakhsh,
- With Mr. Behnam Mashhadi,
 "Manufacturing of a UAV Helicopter"

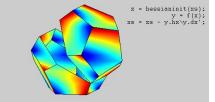


Obtained Results

Maximal Singularity-free Circle

3D Workspace of Gough-Stewart Platform

2D constant orientation workspace (COW) of Gough-Stewart platform, z = 512


3D COW of Gough-Stewart platform, z = [510, 520]

Obtained Results

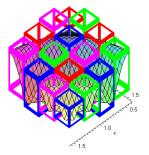
Maximal Singularity-free Circle

Experiences On

Instruments INTLAB IntPakx ALIAS

INTLAB - INTerval LABoratory (Version 6)

The Matlab toolbox for Reliable Computing - www.ti3.tu-harburg.de/rump Siegfried M. Rump, Institute for Reliable Computing, Hamburg University of Technology


20/28

Obtained Results

Maximal Singularity-free Circle

Experiences On

Interval arithmetic using MAPLE

Obtained Results

Maximal Singularity-free Circle

Experiences On

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

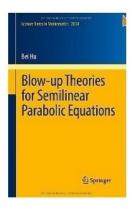
Obtained Results

Maximal Singularity-free Circle

MMKR 2012 International Summer School

Obtained Results

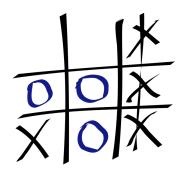
Maximal Singularity-free Circle


MMKR 2012 International Summer School

Me, Prof. J.-P. Merlet and Prof. M. L. Husty

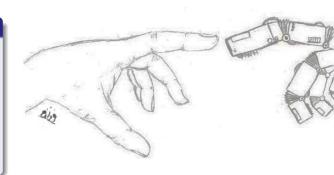
Obstacles

- Find maximal singularity-free for 3-<u>P</u>RR
 ⇒ Blows up
- Cable-driven PMs
 ⇒ Consistency
 (cooperating with Mr. Saman Esfahani)
 - Grid method applicable for more complicated singularities and deals with *dexterity*


Obstacles

- Find maximal singularity-free for 3-<u>P</u>RR
 ⇒ *Blows up*
- Cable-driven PMs ⇒ *Consistency* (cooperating with Mr. Saman Esfahani)
 - Grid method applicable for more complicated singularities and deals with dexterity

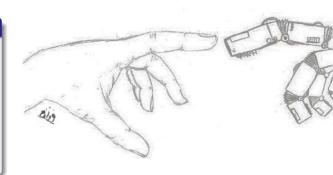
Obstacles


- Find maximal singularity-free for 3-<u>P</u>RR
 ⇒ Blows up
- Cable-driven PMs
 Consistency cooperating with Mr. Saman
 Esfahani)
 - Grid method applicable for more complicated singularities and deals with *dexterity*

Future programs

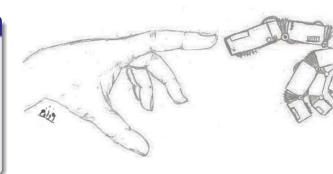
Develop offset approach

- ALIAS
- Gough-Stewart and Cable-driven robots



Future programs

• Develop offset approach


ALIAS

 Gough-Stewart and Cable-driven robots

Future programs

- Develop offset approach
- ALIAS
- Gough-Stewart and Cable-driven robots

Ongoing Papers

Conferences	Venue	Dead line	Conference date	Paper's subject
ISME 2013	K. N. Toosi University of	20 th November 2012	5 th to 7 th May 2013	Maximum singularity-free
	Technology, Iran			workspace of Gough-Stewart platform
ICEE 2013	Ferdowsi University of Mashhad, Iran	1 st December 2012	14 th to 16 th May 2013	Maximum singularity-free circle (MSFC) in the workspace of Gough-Stewart platform
ISRM 2013				MSFC of 3-DoF PMs using Interval Analysis
Multi-Body Dynamics 2013	Zagreb, Croatia	30 th November 2012	1 st to 4 th July 2013	MSFC of PMs using geometrical constructive approach
AIM 2013	Wollongong, Australia	20 th Jaunary 2013	9 th to 12 th July 2013	MSFC in Wrench- Feasible Workspace (WFW) of Cable- driven robots

Ongoing Papers

Journals	Paper's subject
MMT	6-DoF Gough-Stewart platform
	MSFC
Robotics and Automation IEEE	On the maximal singularity-free
	workspace of planar PMs
	MSFC in WFW of Cable-driven
	robots

Schedule

Activity	1	2	3	4	5	6	7	8	9	10
Literature studies	*	*	*	*						
Optimization Approaches		*	*	*						
Interval Analysis				*	*	*				
INTLAB				*	*	*				
IntPakx					*					
ALIAS						*	*			
First paper							*			
Other Approaches								*	*	*
Second paper										*

Schedule

Activity	11	12	13	14	15	16	17	18
Other robots	*	*						
Third paper			*					
Geometry					*	*		
Fourth paper						*		
Preparing thesis						*	*	
Defending								*

Saman Esfehani

- Fateme Ansari
- Sarvenaz Chaee Bakhsh
- Behnam Mashhadi

• Saman Esfehani

- Fateme Ansari
- Sarvenaz Chaee Bakhsh
- Behnam Mashhadi

- Saman Esfehani
- Fateme Ansari
- Sarvenaz Chaee Bakhsh
- Behnam Mashhadi

- Saman Esfehani
- Fateme Ansari
- Sarvenaz Chaee Bakhsh
- Behnam Mashhadi

: ∽) ۹ (∾ 27/28

Rostam Abad

