

Problem 1

Demonstrate that:

- The eigenvalues of a proper orthogonal matrix \mathbf{Q} lie on the unite circle centered at the origin of the complex plane.
- A proper orthogonal 3 matrix has at least one eigenvalue that is +1 .

Problem 2

Consider the following plane in three-dimensional space:

$$
\begin{equation*}
x+2 y+3 z=0 \tag{1.1}
\end{equation*}
$$

Determine:

1. The matrix representing the reflection with respect to this plane;
2. Thee matrix representing the projection into this plane.

Problem 3

Demonstrate the following equations:

1. Equation (2.66). Hint: Expand both sides and show that they result in the same expression.
2. Equations (2.75a) and (2.75 b)
3. Equation (2.78)

Problem 4

Figure 1.1 depicts a tetrahedron in its initial configuration, called configuration I. For our machinery purpose, this should be oriented in such a way that the vertex are as depicted in Fig. 1.1 which leads to configuration II.

1. Since the vertex C is the same for the both configuration, thus the axes of rotation should passes through this point. This axes should also pass through a point, called P, which lies on plane defined by vertex ABD. Determine the position of point P on the aforementioned plane.
2. The corresponding angle of rotation.
3. Find the rotation matrix in a frame for which the axis x, y and z is defined as depicted in configuration I.

Configuration I

Configuration II

Figure 1.1: Schematic for Problem 4.

Problem 5

A robot is set up 1 meter from a table. The table top is 1 meter high and 1 meter square. A frame $O_{1}\left(x_{1}, y_{1}, z_{1}\right)$ is fixed to the edge of the table as shown. A cube measuring 20 cm on a side is placed in the center of the table with frame $O_{2}\left(x_{2}, y_{2}, z_{2}\right)$ established at the center of the cube as shown. A camera is situated directly above the center of the block 2 m above the table top with frame $O_{3}\left(x_{3}, y_{3}, z_{3}\right)$ attached as shown. Find the homogeneous transformations relating each of these frames to the base frame $O_{0}\left(x_{0}, y_{0}, z_{0}\right)$. Find the homogeneous transformation relating the frame $O_{2}\left(x_{2}, y_{2}, z_{2}\right)$ to the camera frame $O_{3}\left(x_{3}, y_{3}, z_{3}\right)$.

Problem 6

Consider a rigid body which rotate around a fix point with respect to the following matrix:

$$
\mathbf{Q}=\left[\begin{array}{ccc}
c^{2}-\frac{1}{3} s^{2} & \frac{2}{3} s^{2}-\frac{2 \sqrt{3}}{3} s c & \frac{2}{3} s^{2}+\frac{2 \sqrt{3}}{3} s c \tag{1.2}\\
\frac{2}{3} s^{2}+\frac{2 \sqrt{3}}{3} s c & c^{2}-\frac{1}{3} s^{2} & \frac{2}{3} s^{2}-\frac{2 \sqrt{3}}{3} s c \\
\frac{2}{3} s^{2}-\frac{2 \sqrt{3}}{3} s c & \frac{2}{3} s^{2}+\frac{2 \sqrt{3}}{3} s c & c^{2}-\frac{1}{3} s^{2}
\end{array}\right]
$$

Figure 1.2: Schematic for Problem 5.
where

$$
\begin{equation*}
s \equiv \sin \left(\frac{\alpha t}{2}\right) \quad c \equiv \cos \left(\frac{\alpha t}{2}\right) \tag{1.3}
\end{equation*}
$$

where α is a constant value and t represents the time.

1. Find a general expression representing the quadratic invariant with respect to time
2. Deduce an interpretation for the rotation under study
3. Find the quadratic invariant for the rotation at $t_{1}=\frac{\pi}{2 \alpha}, t_{2}=\frac{2 \pi}{\alpha}$ and $t_{1}=\frac{\pi}{\alpha}$.

Problem 7

Given the following 3×3 matrix:

$$
\mathbf{R}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \tag{1.4}\\
-\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right]
$$

1. Show that it is a rotation matrix
2. Determine a unit vector that defines the axis of rotation and the angle (in degrees) of rotation.
3. What are the Euler parameters representing R?

Problem 8

Find the angle and the direction of the axis of rotation of the matrix \mathbf{Q} that takes frame $\mathcal{F}(O, X, Y, Z)$ into frame $\mathcal{F}\left(C, X_{0}, Y_{0}, Z_{0}\right)$ of Fig. 2.13. Hint: Define unit vectors $\mathbf{i}^{\prime}, \mathbf{j}^{\prime}$ and \mathbf{k}^{\prime} parallel to X^{\prime}, Y^{\prime} and Z^{\prime}; then, notice that expressions for \mathbf{i}^{\prime} and \mathbf{k}^{\prime} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k} are straightforward. An expression for \mathbf{j}^{\prime} can be obtained as a cross product of known vectors. As well, convert all your square roots and fractions to decimal form at the outset, using four digits.

Figure 1.3: Schematic for Problem 12.

Problem 9

Using the quadratic invariant, a and \mathbf{a}_{0}, or Euler parameters, shows that the rotation matrix can be expressed as follows:

$$
\begin{equation*}
\mathbf{Q}=\left(a_{0}^{2}-\mathbf{a} \mathbf{a}^{T}\right) \mathbf{1}+2 \mathbf{a} \mathbf{a}^{T}+2 a_{0} \mathbf{1} \times \mathbf{a} \tag{1.5}
\end{equation*}
$$

Problem 10

Do the following exercise from the book: 2.21, 2.27 and 2.30

Problem 11

Find the rotation matrix corresponding to the set of Euler angles and the inverse solution of

1. ZYZ (discuss about the case $\sin \vartheta=0$).
2. Roll-Pitch-Yaw (discuss about the case $\cos \vartheta=0$)

Figure 1.4: Schematic for Problem 15.

Problem 12

Find the homogeneous transformations H_{1}^{0}, H_{2}^{0} and H_{1}^{2} representing the transformations among the three frames shown in Fig. 1.3. Find a relation between these transformations.

Problem 13

In Fig. 1.4 a plate is moved from the horizontal base to an inclined surface by a manipulator. With respect to the \mathbf{i}, \mathbf{j} and \mathbf{k} bases, determine:

1. The rotation matrix describing this operation;
2. The axes of rotation and the corresponding rotation angle about this axes.
